×

Nongeneric bifurcations near a nontransversal heterodimensional cycle. (English) Zbl 1392.34042

The authors consider the following autonomous differential system \[ \dot{z}= f(z) + g(z,\mu)\tag{1} \] and its unperturbed system \[ \dot{z}= f(z), \tag{2} \] where \(z \in \mathbb{R}^3\), \(\mu \in \mathbb{R}^l\), \(l \geq 3\), \(0 < | \mu | \ll 1\), \(g(z,0)=0\), \(f(z) \) is \(C^r\) with respect to the phase variable \(z\), \(g(z,\mu)\) is \(C^r\) with respect to the phase variable \(z\) and the parameter \(\mu\) and \(r \geq 4\).

The authors assume that system (2) has a heteroclinic cycle connecting two hyperbolic equilibria which is heterodimensional, that is, the equilibrium points in the cycle do not have the same index (dimension of the stable manifold). The authors also assume that the two heteroclinic orbits of the heterodimensional cycle are both nontransversal and with an orbit flip. In this strong degeneracy condition, the authors provide some rich bifurcation phenomena. The techniques that they use in order to tackle with the Poincaré return map are Shilnikov coordinates and a local moving frame.

As an example, the authors consider bifurcations from the following system \[ \begin{aligned} \dot{z}_1 & = -(z_1-1)(z_1+1)+3(z_1^2+z_2^2-1), \\ \dot{z}_2 & = -z_1z_2, \\ \dot{z}_3 & = (7-8z_1)z_3/3, \end{aligned} \] which has an heteroclinic cycle formed by \(\Gamma_1 \cup \Gamma_2\) with \[ \Gamma_1= \left\{ z \mid z_1^2+z_2^2=1, z_3=0, z_2 \geq 0\right\}, \]
\[ \Gamma_2 = \left\{ z \mid z_2=z_3=0, z_1 \in (-1,1) \right\}. \]

MSC:

34C23 Bifurcation theory for ordinary differential equations
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
37C29 Homoclinic and heteroclinic orbits for dynamical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Homburg, A. J. and Sandstede, B., Homoclinic and heteroclinic bifurcations in vector fields, Handbook of Dynamical Systems, Broer, Henk (ed.) et al., 3, Amsterdam: Elsevier, 2010, 379-524. · Zbl 1243.37024
[2] Han, M. A. and Zhu, H. P., The loop quantities and bifurcations of homoclinic loops, J. Differ. Equ., 234, 2007, 339-359. · Zbl 1120.34032 · doi:10.1016/j.jde.2006.11.009
[3] Chow, S. N., Jiang, M. and Lin, X. B., Traveling wave solutions in coupled Chua’s circuits, part I: Periodic solutions, J. Applied. Analysis and Computation, 3, 2013, 213-237. · Zbl 1307.34025
[4] Yanagida, E., Branching of double pulse solutions from single pulse solutions in nerve axon equations, J. Differ. Equ., 66, 1987, 243-262. · Zbl 0661.35003 · doi:10.1016/0022-0396(87)90034-9
[5] Sandstede, B., Constructing dynamical systems having homoclinic bifurcation points of codimension two, J. Dyn. Differ. Equ., 9, 1997, 269-288. · Zbl 0879.34051 · doi:10.1007/BF02219223
[6] Naudot, V., A strange attractor in the unfolding of an orbit-flip homoclinic orbit, Dyn. Syst., 17, 2002, 45-63. · Zbl 1184.37029 · doi:10.1080/14689360110104563
[7] Golmakani, A. and Homburg, A. J., Lorenz attractors in unfoldings of homoclinic-flip bifurcations, Dyn. Syst., 26, 2011, 61-76. · Zbl 1268.37023 · doi:10.1080/14689367.2010.503186
[8] Liu, X. B., Wang, Z. Z. and Zhu, D. M., Bifurcation of rough heteroclinic loop with orbit flips, Int. J. Bifurc. Chaos, 22, 2012, 1250278-1. · Zbl 1258.34093 · doi:10.1142/S0218127412502781
[9] Newhouse, S. E. and Palis, J., Bifurcations of Morse-Smale dynamical systems, Dynamical Systems, Aca- demic Press, New York, 1973, 303-366. · Zbl 0279.58011
[10] Fernández-Sánchez, F., Freire, E. and Rodr´iguez-Luis, A. J., Bi-spiraling homoclinic curves around a T-point in Chua’s circuit, Int. J. Bifurc. Chaos, 14, 2004, 1789-1793. · Zbl 1129.37308 · doi:10.1142/S0218127404010072
[11] Algaba, A., Freire, E., Gamero, E. and Rodr´iguez-Luis, A. J., A tame degenerate Hopf-pitchfork bifurcation in a modified van der Pol-Duffing oscillator, Nonlinear Dyn., 22, 2000, 249-269. · Zbl 0976.70016 · doi:10.1023/A:1008328027179
[12] Bykov, V. V., The bifurcations of separatrix contours and chaos, Physica D, 62, 1993, 290-299. · Zbl 0799.58054 · doi:10.1016/0167-2789(93)90288-C
[13] Rademacher, J. D. M., Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit, J. Differ. Equ., 218, 2005, 390-443. · Zbl 1091.34026 · doi:10.1016/j.jde.2005.03.016
[14] Bonatti, C., Diaz, L. J., Pujals, E. and Rocha, J., Robust transitivity and heterodimensional cycles, Asterisque, 286, 2003, 187-222. · Zbl 1056.37024
[15] Diaz, L. J. and Rocha, J., Heterodimensional cycles, partial hyperbolity and limit dynamics, Fund. Math., 174, 2002, 127-186. · Zbl 1033.37014 · doi:10.4064/fm174-2-2
[16] Lamb, J. S. W., Teixeira, M. A. and Webster, K. N., Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in R3, J. Differ. Equ., 219, 2005, 78-115. · Zbl 1090.34033 · doi:10.1016/j.jde.2005.02.019
[17] Liu, D., Geng, F. J. and Zhu, D. M., Degenerate bifurcations of nontwisted heterodimensional cycles with codimension 3, Nonlinear Analysis, 68, 2008, 2813-2827. · Zbl 1165.34026 · doi:10.1016/j.na.2007.02.028
[18] Liu, X. B., Bifurcations near the weak type heterodimensional cycle, Int. J. Bifur. Chaos, 9, 2014, 1450112, 18 pages. · Zbl 1301.34056 · doi:10.1142/S0218127414501120
[19] Lu, Q. Y., Qiao, Z. Q., Zhang, T. S. and Zhu, D. M., Heterodimensional cycle bifurcation with orbit-flip, Int. J. Bifur. Chaos, 20, 2010, 491-508. · Zbl 1188.34044 · doi:10.1142/S0218127410025569
[20] Fernández-Sánchez, F., Freire, E. and Rodr´iguez-Luis. A. J., Bi-spiraling homoclinic curves around a T-point in Chua’s circuit, Int. J. Bifur. Chaos, 14, 2004, 1789-1793. · Zbl 1129.37308 · doi:10.1142/S0218127404010072
[21] Zhu, D. M. and Xia, Z. H., Bifurcations of heteroclinic loops, Sci. China Ser. A, 41, 1998, 837-848. · Zbl 0993.34040 · doi:10.1007/BF02871667
[22] Liu, X. B., Homoclinic flip bifurcations accompanied by transcritical bifurcation, Chin. Ann. Math., Ser. B, 6, 2011, 905-916. · Zbl 1271.34046
[23] Xu, Y. C. and Zhu, D. M., Bifurcations of heterodimensional cycles with one orbit flip and one inclination flip, Nonlinear Dyn., 60, 2010, 1-13. · Zbl 1189.70102 · doi:10.1007/s11071-009-9575-z
[24] Shilnikov, L. P., Shilnikov, A. L., Turaev, D. V. and Chua, L. O., Methods of Qualitative Theory in Nonlinear Dynamics, Part I, World Scientific, New Jersey, 1998. · Zbl 0941.34001 · doi:10.1142/9789812798596
[25] Homburg, A. J. and Knobloch, J., Multiple homoclinic orbits in conservative and reversible systems, Trans. Am. Math. Soc., 4, 2006, 1715-1740. · Zbl 1162.34034 · doi:10.1090/S0002-9947-05-03793-1
[26] Deng, B., Sil’nikov problem, exponential expansion, strong λ-Lemma, C1-linearization and homoclinic bifurcation, J. Differ. Equ., 79, 1989, 189-231. · Zbl 0674.34040 · doi:10.1016/0022-0396(89)90100-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.