×

The onset of dynamic stall at a high, transitional Reynolds number. (English) Zbl 1415.76528

Summary: Dynamic stall due to a ramp-type pitching motion is investigated on the NACA 0012 airfoil at chord Reynolds number of \(Re_c=1.0\times 10^6\) through the use of wall-resolved large-eddy simulation. Emphasis is placed on the unsteady boundary-layer interactions that develop as the airfoil approaches stall. At this Reynolds number it is shown that turbulent separation moves upstream across much of the airfoil suction surface. When turbulent separation reaches the leading-edge separation bubble, a bursting event is initiated leading to a strong coherent leading-edge vortex structure. This vortex wraps up the turbulent shear layer to form a large dynamic stall vortex. The use of large-eddy simulation elucidates the roll of the laminar separation bubble in defining the onset of the dynamic stall process. Comparisons are made to identical simulations at lower Reynolds numbers of \(Re_c=0.2\times 10^6\) and \(0.5\times 10^6\). This comparison demonstrates trends in the boundary-layer mechanics that explain the sensitivity of the dynamic stall process to Reynolds number.

MSC:

76N20 Boundary-layer theory for compressible fluids and gas dynamics
76G25 General aerodynamics and subsonic flows
76F65 Direct numerical and large eddy simulation of turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alpert, P., Implicit filtering in conjunction with explicit filtering, J. Comput. Phys., 44, 1, 212-219, (1981) · Zbl 0492.76054 · doi:10.1016/0021-9991(81)90047-4
[2] Asada, K.; Kawai, S., Large-eddy simulation of airfoil flow near stall condition at Reynolds number 2. 1 × 106, Phys. Fluids, 30, (2018) · doi:10.1063/1.5037278
[3] Beam, R. M.; Warming, R. F., An implicit factored scheme for the compressible Navier-Stokes equations, AIAA J., 16, 4, 393-402, (1978) · Zbl 0374.76025
[4] Benton, S. I. & Visbal, M. R.2017High-frequency forcing to delay dynamic stall at relevant Reynolds number. In 47th AIAA Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics.
[5] Carr, L. W., Progress in analysis and prediction of dynamic stall, J. Aircraft, 25, 1, 6-17, (1988) · doi:10.2514/3.45534
[6] Carr, L. W., Mcalister, K. W. & Mccroskey, W. J.1977 Analysis of the development of dynamic stall based on oscillating airfoil experiments. Technical Note NASA TN D-8382. National Aeronautics and Space Administration.
[7] Carr, L. W., Mccroskey, W. J., Mcalister, K. W., Pucci, S. L. & Lambert, O.1982 An experimental study of dynamic stall on advanced airfoil sections volume 3. Hot-wire and Hot-film measurements. NASA Technical Memorandum 84245. National Aeronautics and Space Administration.
[8] Chandrasekhara, M. S.; Carr, L. W.; Wilder, M. C., Interferometric investigations of compressible dynamic stall over a transiently pitching airfoil, AIAA J., 32, 3, 586-593, (1994)
[9] Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W., Boundary-layer-tripping studies of compressible dynamic stall flow, AIAA J., 34, 1, 96-103, (1996)
[10] Critzos, C. C., Heyson, H. H. & Boswinkle, R. W. Jr 1955 Aerodynamic characteristics of NACA 0012 airfoil section at angles of attack from \(0^{\circ }\) to \(180^{\circ }\). Technical Note 3361. National Advisory Committee for Aeronautics.
[11] Diwan, S. S., Chetan, S. J. & Ramesh, O. N.2006On the bursting criterion for laminar separation bubbles. In Sixth IUTAM Symposium on Laminar-Turbulent Transition (ed. Govindarajan, R.), pp. 401-407. Springer. doi:10.1007/1-4020-4159-4_57 · doi:10.1007/1-4020-4159-4_57
[12] Ekaterinaris, J. A.; Platzer, M. F., Computational prediction of airfoil dynamic stall, Prog. Aerosp. Sci., 33, 759-846, (1997) · doi:10.1016/S0376-0421(97)00012-2
[13] Evans, W. T. & Mort, K. W.1959 Analysis of computed flow parameters for a set of sudden stalls in low-speed two-dimensional flow. Technical Note NASA TN D-85. National Aeronautics and Space Administration.
[14] Gaitonde, D. V.; Shang, J. S.; Young, J. L., Practical aspects of higher-order numerical schemes for wave propagation phenomena, Intl J. Numer. Meth. Engng, 45, 1849-1869, (1999) · Zbl 0959.65103 · doi:10.1002/(SICI)1097-0207(19990830)45:12<1849::AID-NME657>3.0.CO;2-4
[15] Gaitonde, D. V. & Visbal, M. R.1998 High-order schemes for Navier-Stokes equations: algorithm and implementation into FDL3DI. Final Report AFRL-VA-WP-TR-1998-3060. Air Force Research Laboratory.
[16] Garmann, D. J.; Visbal, M. R.; Orkwis, P., Comparative study of implicit and subgrid-scale model large-eddy simulation techniques for low-Reynolds number airfoil applications, Intl J. Numer. Meth. Fluids, 71, 12, 1546-1565, (2013) · Zbl 1430.76304 · doi:10.1002/fld.3725
[17] Georgiadis, N. J.; Rizzetta, D. P.; Fureby, C., Large-eddy simulation: current capabilities, recommended practices, and future research, AIAA J., 48, 8, 1772-1784, (2010)
[18] Gupta, R. & Ansell, P. J.2018Investigation of the effects of Reynolds number on the unsteady flow physics of airfoil dynamic stall. In 56th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics.
[19] Ham, N. D., Stall flutter of helicopter rotor blades: a special case of the dynamic stall phenomenon, J. Am. Helicopter Soc., 12, 4, 19-21, (1967) · doi:10.4050/JAHS.12.19
[20] Ham, N. D., Some recent mit research on dynamic stall, J. Aircraft, 9, 5, 378-379, (1972) · doi:10.2514/3.58995
[21] Jones, B. M., Stalling, J. Roy. Aeronaut. Soc., 38, 285, 753-770, (1934) · doi:10.1017/S0368393100109782
[22] Le Pape, A.; Costes, M.; Joubert, G.; David, F.; Deluc, J. M., Dynamic stall control using deployable leading-edge vortex generators, AIAA J., 50, 10, 2135-2145, (2012)
[23] Lee, T.; Gerontakos, P., Investigation of flow over an oscillating airfoil, J. Fluid Mech., 512, 313-341, (2004) · Zbl 1163.76307 · doi:10.1017/S0022112004009851
[24] Leishman, J. G.1984 Contributions to the experimental investigation and analysis of aerofoil dynamic stall. PhD thesis, University of Glasgow.
[25] Leishman, J. G., Dynamic stall experiments on the NACA 23012 aerofoil, Exp. Fluids, 9, 49-58, (1990) · doi:10.1007/BF00575335
[26] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42, (1992) · Zbl 0759.65006 · doi:10.1016/0021-9991(92)90324-R
[27] Lorber, P. F.; Carta, F. O., Airfoil dynamic stall at constant pitch rate and high Reynolds number, J. Aircraft, 25, 6, 548-556, (1988) · doi:10.2514/3.45621
[28] Martin, J. M.; Empey, R. W.; Mccroskey, W. J.; Caradonna, F. X., An experimental analysis of dynamic stall on an oscillating airfoil, J. Am. Helicopter Soc., 19, 1, 26-32, (1974) · doi:10.4050/JAHS.19.26
[29] Mcalister, K. W., Carr, L. W. & Mccroskey, W. J.1978 Dynamic stall experiments on the naca 0012 airfoil. NASA Technical Paper 1100. National Aeronautics and Space Administration.
[30] Mcalister, K. W., Pucci, S. L., Mccroskey, W. J. & Carr, L. W.1982 An experimental study of dynamic stall on advanced airfoil sections volume 2. Pressure and force data. NASA Technical Memorandum 84245. National Aeronautics and Space Administration.
[31] Mccroskey, W. J., Unsteady airfoils, Annu. Rev. Fluid Mech., 14, 285-311, (1982) · Zbl 0512.76010 · doi:10.1146/annurev.fl.14.010182.001441
[32] Mccroskey, W. J.; Carr, L. W.; Mcalister, K. W., Dynamic stall experiments on oscillating airfoils, AIAA J., 14, 1, 57-63, (1976)
[33] Mccroskey, W. J., Mcalister, K. W., Carr, L. W. & Pucci, S. L.1982 An experimental study of dynamic stall on advanced airfoil sections volume 1. Summary of the experiment. NASA Technical Memorandum 84245. National Aeronautics and Space Administration.
[34] Mccullough, G. B. & Gault, D. E.1951 Examples of three representative types of airfoil-section stall at low speed. Technical Note 2502. National Advisory Committee for Aeronautics.
[35] Mulleners, K.; Raffel, M., The onset of dynamic stall revisited, Exp. Fluids, 52, 779-793, (2012) · doi:10.1007/s00348-011-1118-y
[36] Mulleners, K.; Raffel, M., Dynamic stall development, Exp. Fluids, 54, (2013) · doi:10.1007/s00348-013-1469-7
[37] Piomelli, U.; Balaras, E., Wall-layer models for large-eddy simulations, Annu. Rev. Fluid Mech., 34, 349-374, (2002) · Zbl 1006.76041 · doi:10.1146/annurev.fluid.34.082901.144919
[38] Pruski, B. J.; Bowersox, R. D. W., Leading-edge flow structure of a dynamically pitching NACA 0012 airfoil, AIAA J., 51, 5, 1042-1053, (2013)
[39] Richez, F., Mary, I., Gleize, V. & Basdevant, C.2008Near stall simulation of the flow around an airfoil using zonal rans/les coupling method. Comput. Fluids37 (7), 857-866. Special Issue of the ‘Turbulence and Interaction-TI2006’ Conference. doi:10.1016/j.compfluid.2007.03.016 · Zbl 1143.76463 · doi:10.1016/j.compfluid.2007.03.016
[40] Rizzetta, D. P.; Visbal, M. R.; Blaisdell, G. A., A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation, Intl J. Numer. Meth. Fluids, 42, 6, 665-693, (2003) · Zbl 1143.76464 · doi:10.1002/fld.551
[41] Schreck, S. J.; Faller, W. E.; Robinson, M. C., Unsteady separation processes and leading edge vortex precursors: pitch rate and Reynolds number influences, J. Aircraft, 39, 5, 868-875, (2002) · doi:10.2514/2.3007
[42] Sheldahl, R. E. & Klimas, P. C.1981 Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. Tech. Rep. SAND80-2114. Sandia National Laboratories.
[43] Sherer, S. E.; Visbal, M. R., Multi-resolution implicit large eddy simulations using a high-order overset-grid approach, Intl J. Numer. Meth. Fluids, 55, 5, 455-482, (2007) · Zbl 1388.76105 · doi:10.1002/fld.1463
[44] Steger, J. L., Implicit finite-difference simulations of flow about arbitrary two-dimensional geometries, AIAA J., 16, 7, 679-686, (1978) · Zbl 0383.76013
[45] Tani, I., Low-speed flows involving bubble separations, Prog. Aerosp. Sci., 5, 70-103, (1964) · doi:10.1016/0376-0421(64)90004-1
[46] Vinokur, M., Conservation equations of gasdynamics in curvilinear coordinate systems, J. Comput. Phys., 14, 2, 105-125, (1974) · Zbl 0277.76061 · doi:10.1016/0021-9991(74)90008-4
[47] Visbal, M. R., Analysis of the Onset of Dynamic Stall Using High-fidelity Large-eddy Simulations, (2014), American Institute of Aeronautics and Astronautics · doi:10.2514/6.2014-0591
[48] Visbal, M. R., Numerical Exploration of Flow Control for Delay of Dynamic Stall on a Pitching Airfoil, (2014), American Institute of Aeronautics and Astronautics · doi:10.2514/6.2014-2044
[49] Visbal, M. R., Control of Dynamic Stall on a Pitching Airfoil Using High-frequency Actuation, (2015), American Institute of Aeronautics and Astronautics · doi:10.2514/6.2015-1267
[50] Visbal, M. R.; Gaitonde, D. V., High-order-accurate methods for complex unsteady subsonic flows, AIAA J., 37, 10, 1231-1239, (1999)
[51] Visbal, M. R.; Gaitonde, D. V., On the use of higher-order finite-difference schemes on curvilinear and deforming meshes, J. Comput. Phys., 181, 155-185, (2002) · Zbl 1008.65062 · doi:10.1006/jcph.2002.7117
[52] Visbal, M. R. & Garmann, D. J.2017Numerical investigation of spanwise end effects on dynamic stall of a pitching NACA 0012 wing. In 55th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics.
[53] Visbal, M. R.; Garmann, D. J., Analysis of dynamic stall on a pitching airfoil using high-fidelity large-eddy simulations, AIAA J., 56, 1, 46-63, (2018)
[54] Visbal, M. R.; Rizzetta, D. P., Large-eddy simulation on curvilinear grids using compact differencing and filtering schemes, J. Fluids Engng, 124, 836-847, (2002) · doi:10.1115/1.1517564
[55] Visbal, M. R.; Shang, J. S., Investigation of the flow structure around a rapidly pitching airfoil, AIAA J., 27, 8, 1044-1051, (1989)
[56] Wallis, R. A.1962Boundary-layer transition at the leading edge of thin wings and its effect on general nose separation. In Advances in Aeronautical Science, vol. 3. Pergamon Press. · Zbl 0116.42802
[57] Zhou, Y.; Wang, Z. J., Absorbing boundary conditions for the Euler and Navier-Stokes equations with the spectral difference method, J. Comput. Phys., 229, 23, 8733-8749, (2010) · Zbl 1282.76146 · doi:10.1016/j.jcp.2010.08.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.