×

Can pathogen spread keep pace with its host invasion? (English) Zbl 1347.35223

Summary: We consider the Fisher-KPP equation in a wavelike shifting environment for which the wave profile of the environment is given by a monotonically decreasing function changing signs (shifting from favorable to unfavorable environment). This type of equation arises naturally from the consideration of pathogen spread in a classical susceptible-infected-susceptible epidemiological model of a host population where the disease impact on host mobility and mortality is negligible. We conclude that there are three different ranges of the disease transmission rate where the disease spread has distinguished spatiotemporal patterns: extinction; spread in pace with the host invasion; spread not in a wave format and slower than the host invasion. We calculate the disease propagation speed when disease does spread. Our analysis for a related elliptic operator provides closed form expressions for two generalized eigenvalues in an unbounded domain. The obtained closed forms yield unsolvability of the related elliptic equation in the critical case, which relates to the open problem 4.6 in [H. Berestycki and L. Rossi, J. Eur. Math. Soc. (JEMS) 8, No. 2, 195–215 (2006; Zbl 1105.35061)].

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92D30 Epidemiology
35C07 Traveling wave solutions
35K57 Reaction-diffusion equations
37N25 Dynamical systems in biology
92D25 Population dynamics (general)

Citations:

Zbl 1105.35061
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. Abramson, V. M. Kenkre, T. L. Yates, and R. R. Parmenter, {\it Traveling waves of infection in the hantavirus epidemics}, Bull. Math. Biol., 65 (2003), pp. 519-534. · Zbl 1334.92386
[2] D. A. Andow, P. M. Kareiva, S. A. Levin, and A. Okubo, {\it Spread of invading organisms}, Landscape Ecol., 4 (1990), pp. 177-188.
[3] L. Berec, E. Angulo, and F. Courchamp, {\it Multiple Allee effects and population management}, Trends Ecol. Evol., 22 (2007), pp. 185-191.
[4] H. Berestycki, L. Desvillettes, and O. Diekmann, {\it Can climate change lead to gap formation?}, Ecol. Complex, 20 (2014), pp. 264-270.
[5] H. Berestycki, O. Diekmann, C. J. Nagelkerke, and P. A. Zegeling, {\it Can a species keep pace with a shifting climate?}, Bull. Math. Biol., 71 (2009), pp. 399-429. · Zbl 1169.92043
[6] H. Berestycki, F. Hamel, and L. Roques, {\it Analysis of the periodically fragmented environment model: I - Influence of periodic heterogeneous environment on species persistence}, J. Math. Biol., 51 (2005), pp. 75-113. · Zbl 1066.92047
[7] H. Berestycki, L. Nirenberg, and S. R. S. Varadhan, {\it The principal eigenvalue and maximum principle for second-order elliptic operators in general domains}, Comm. Pure Appl. Math., 47 (1994), pp. 47-92. · Zbl 0806.35129
[8] H. Berestycki and L. Rossi, {\it On the principal eigenvalue of elliptic operators in \(\mathbb{R}^n\) and applications}, J. Eur. Math. Soc. (JEMS), 8 (2006), pp. 195-215. · Zbl 1105.35061
[9] L. Bourouiba, S. A. Gourley, R. Liu, and J. Wu, {\it The interaction of migratory birds and domestic poultry and its role in sustaining avian influenza}, SIAM J. Appl. Math., 71 (2011), pp. 487-516. · Zbl 1231.34146
[10] L. Bourouiba, J. Wu, S. Newman et al., {\it Spatial dynamics of bar-headed geese migration in the context of \(H5 N1\)}, J. R. Soc. Interface., 52 (2010), pp. 1627-1639.
[11] I.-C. Chen, J. K. Hill, and R. Ohlemuller, {\it Rapid range shifts of species associated with high levels of climate warming}, Science, 333 (2011), pp. 1024-1026.
[12] R. T. Corlett and D. A. Westcott, {\it Will plant movements keep up with climate change?}, Trends. Ecol. Evol., 28 (2013), pp. 482-488.
[13] M. A. Diuk-Wasser, A. G. Gatewood, M. R. Cortinas, S. Yaremych-Hamer, J. Tsao, U. Kitron, G. Hickling, J. S. Brownstein, E. Walker, J. Piesman, and D. Fish, {\it Spatiotemporal patterns of host-seeking Ixodes scapularis nymphs (Acari: Ixodidae) in the United States}, J. Med. Entomol., 43 (2006), pp. 166-176.
[14] M. A. Diuk-Wasser, E. Gatewood-Hoen, P. Cislo, R. Brinkerhoff, S. Hamer, M. Rowland, R. Cortinas, G. Vourc’h, F. Melton, G. J. Hickling, J. I. Tsao, J. Bunikis, A. G. Barbour, U. Kitron, J. Piesman, and D. Fish, {\it Human risk of infection with Borrelia burgdorferi, the Lyme disease agent in eastern United States}, Amer. J. Trop. Med., 86 (2012), pp. 320-327.
[15] M. A. Diuk-Wasser, G. Vourc’h, P, Cislo, A. G. Hoen, F. Melton, M. Rowland, R. Cortinas, G. J. Hickling, J. L. Tsao, A. G. Barbour, U. Kitron, J. Piesman, and D. Fish, {\it Field and climate based model for predicting the density of host-seeking nymphal Ixodes scapularis, an important vector of tickborne disease agents in the eastern United States}, Global Ecol. Biogeogr., 19 (2010), pp. 504-514.
[16] Y. Du and H. Matano, {\it Convergence and sharp thresholds for propagation in nonlinear diffusion problems}, J. Eur. Math. Soc. (JEMS), 12 (2010), pp. 279-312. · Zbl 1207.35061
[17] J. G. Eaton and R. M. Scheller, {\it Effects of climate warming on fish thermal habitat in streams of the United States}, Limnol. Oceanogr., 41 (1996), pp. 1109-1115.
[18] R. A. Fisher, {\it The wave of advance of advantageous genes}, Ann. Eugenics, 7 (1937), pp. 353-369. · JFM 63.1111.04
[19] A. Friedman and A. Yakubu, {\it Fatal disease and demographic Allee effect: Population persistence and extinction}, J. Biol. Dyn., 6 (2012), pp. 495-508. · Zbl 1273.34052
[20] A. Friedman and A.-A. Yakubu, {\it Host demographic Allee effect, fatal disease and migration: Persistence or extinction}, SIAM J. Appl. Math., 72 (2012), pp. 1644-1666. · Zbl 1273.34052
[21] S. A. Gourley, R. Liu, and J. Wu, {\it Spatiotemporal distributions of migratory birds: Patchy models with delay}, SIAM. J. Appl. Dyn. Syst., 9 (2010), pp. 589-610. · Zbl 1195.34126
[22] A. Hastings, K. Cuddington, K. F. Davies, et al., {\it The spatial spread of invasions: New developments in theory and evidence}, Ecol. Lett., 8 (2005), pp. 91-101.
[23] J. J. Hellmann, J. E. Byers, B. G. Bierwagen, and J. S. Dukes, {\it Five potential consequences for invasive species under climate change}, Conserv. Biol., 22 (2008), pp. 534-543.
[24] F. M. Hilker, M. Langlais, S. V. Petrovskii, and H. Malchow, {\it A diffusive SI model with Allee effect and application to FIV}, Math. Biosci., 206 (2007), pp. 61-80. · Zbl 1124.92044
[25] F. M. Hilker, M. A. Lewis, H. Seno, M. Langlais, and H. Malchow, {\it Pathogens can slow down or reverse invasion fronts of their hosts}, Biol. Invasions, 7 (2005), pp. 817-832.
[26] O. Hoegh-Guldberg, L. Hughes, and S. McIntyre, {\it Assisted colonization and rapid climate change}, Science, 321 (2008), pp. 345-346.
[27] D. M. Johnson, U. Buntgen, D. C. Frank, et al., {\it Climatic warming disrupts recurrent Alpine insect outbreaks}, Proc. Natl. Acad. Sci. USA, 107 (2010), pp. 20576-20581.
[28] P. A. Leighton, J. K. Koffi, Y. Pelcat, et al., {\it Predicting the speed of tick invasion: An empirical model of range expansion for the Lyme disease vector Ixodes scapularis in Canada}, J. Appl. Ecol., 49 (2002), pp. 457-464.
[29] S. J. Leroux, M. Larrivée, V. Boucher-Lalonde, et al., {\it Mechanistic models for the spatial spread of species under climate change}, Ecol. Appl., 23 (2013), pp. 815-828.
[30] B. Li, S. Bewick, J. Shang, and W. F. Fagan, {\it Persistence and spread of a species with a shifting habitat edge}, SIAM J. Appl. Math., 74 (2014), pp. 1397-1417. · Zbl 1345.92120
[31] B. Li, S. Bewick, J. Shang, and W. F. Fagan, {\it Erratum to: Persistence and spread of a species with a shifting habitat edge}, SIAM J. Appl. Math., 75 (2015), pp. 2379-2380. · Zbl 1345.92164
[32] S. R. Loarie, P. B. Duffy, H. Hamilton, et al., {\it The velocity of climate change}, Nature, 462 (2009), pp. 1052-1055.
[33] S. Ma, {\it Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem}, J. Differential Equations., 17 (2001), pp. 294-314. · Zbl 0988.34053
[34] J. R. Malcolm, A. Markham, R. P. Neilson, and M. Garaci, {\it Estimated migration rates under scenarios of global climate change}, J. Biogeogr., 29 (2002), pp. 835-849.
[35] N. H. Ogden, L. St-Onge, I. K. Barker et al., {\it Risk maps for range expansion of the Lyme disease vector, Ixodes scapularis, in Canada now and with climate change}, Int. J. Health. Geogr., 7 (2008), 24.
[36] A. B. Potapov and M. A. Lewis, {\it Climate and competition: The effect of moving range boundaries on habitat invasibility}, Bull. Math. Biol., 66 (2004), pp. 975-1008. · Zbl 1334.92454
[37] L. Roques, J. Garnier, F. Hamel, and E. K. Klein, {\it Allee effect promotes diversity in traveling waves of colonization}, Proc. Natl. Acad. Sci. USA, 109 (2012), pp. 8828-8833.
[38] L. Roques, A. Roques, H. Berestycki, and A. Kretzschmar, {\it A population facing climate change: joint influences of Allee effects and environmental boundary geometry}, Pop. Ecol., 50 (2008), pp. 215-225.
[39] N. Roura-Pascual, C. Huia, T. Ikeda, et al., {\it Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader}, Proc. Natl. Acad. Sci. USA, 108 (2011), pp. 220-225.
[40] J. A. Sherratt, M. A. Lewis, and A. C. Fowler, {\it Ecological chaos in the wake of invasion}, Proc. Natl. Acad. Sci. USA, 28 (1995), pp. 2524-2528. · Zbl 0819.92024
[41] H. Thieme, {\it Asymptotically autonomous differential equations in the plane}, Rocky Mountain J. Math., 24 (1993), pp. 351-380. · Zbl 0811.34036
[42] H. Tian, S. Zhou, L. Dong et al., {\it Avian influenza \(H5 N1\) viral and bird migration networks in Asia}, Proc. Natl. Acad. Sci. USA, 112 (2015), pp. 172-177.
[43] G.-R. Walther, E. Post, P. Convey, et al., {\it Ecological responses to recent climate change}, Nature, 416 (2002), pp. 389-395.
[44] D. Widder, {\it The Laplace Transform}, Princeton University Press, Princeton, NJ, 1941. · JFM 67.0384.01
[45] J. Wu and X. Zou, {\it Traveling wave fronts of reaction-diffusion systems with delay}, J. Dynam. Differential Equations, 13 (2001), pp. 651-687. · Zbl 0996.34053
[46] Y. Zhou and M. Kot, {\it Life on the move: modeling the effects of climate-driven range shifts with integrodifference equations}, in M. A. Lewis, P. K. Maini, and S. V. Petrovskii, eds., Dispersal, Individual Movement and Spatial Ecology: A Mathematical Perspective, Springer, Berlin, 2013, pp. 263-292. · Zbl 1347.92110
[47] A. Zlatos, {\it Sharp transition between extinction and propagation of reaction}, J. Amer. Math. Soc., 19 (2006), pp. 251-263. · Zbl 1081.35011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.