×

Connecting orbits for compact infinite dimensional maps: computer assisted proofs of existence. (English) Zbl 1343.37078

Summary: We develop and implement a computer assisted argument for proving the existence of heteroclinic/homoclinic connecting orbits for compact infinite dimensional maps. The argument is based on a posteriori analysis of a certain “discrete time boundary value problem”, and a key ingredient is representing the local stable/unstable manifolds of the fixed points. For a compact mapping the stable manifold is infinite dimensional, and an important component of the present work is the development of computer assisted error bounds for numerical approximation of infinite dimensional stable manifolds. As an illustration of the utility of our method we prove the existence of some connecting orbits for a nonlinear dynamical system which appears in mathematical ecology as a model of a spatially distributed ecosystem with population dispersion.

MSC:

37L25 Inertial manifolds and other invariant attracting sets of infinite-dimensional dissipative dynamical systems
37M99 Approximation methods and numerical treatment of dynamical systems
65P99 Numerical problems in dynamical systems
65G20 Algorithms with automatic result verification

Software:

galepu; INTLAB
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. Ambrosi, G. Arioli, and H. Koch, {\it A homoclinic solution for excitation waves on a contractile substratum}, SIAM J. Appl. Dyn. Syst., 11 (2012), pp. 1533-1542. · Zbl 1260.34080
[2] G. Arioli and H. Koch, {\it Integration of dissipative partial differential equations: A case study}, SIAM J. Appl. Dyn. Syst., 9 (2010), pp. 1119-1133. · Zbl 1298.37071
[3] G. Arioli and H. Koch, {\it Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation}, Nonlinear Anal., 113 (2015), pp. 51-70. · Zbl 1304.35181
[4] G. Arioli and P. Zgliczyński, {\it Symbolic dynamics for the Hénon-Heiles Hamiltonian on the critical level}, J. Differential Equations, 171 (2001), pp. 173-202. · Zbl 1018.37006
[5] W.-J. Beyn, {\it The numerical computation of connecting orbits in dynamical systems}, IMA J. Numer. Anal., 10 (1990), pp. 379-405. · Zbl 0706.65080
[6] M. Breden, J. Lessard, and J. Mireles James, {\it Computation of maximal local (un)stable manifold patches by the parameterization method}, Indag. Math. (N.S.), to appear. · Zbl 1336.65197
[7] M. Breden, J.-P. Lessard, and M. Vanicat, {\it Global bifurcation diagrams of steady states of systems of PDEs via rigorous numerics: A 3-component reaction-diffusion system}, Acta Appl. Math., 128 (2013), pp. 113-152. · Zbl 1277.65088
[8] X. Cabré, E. Fontich, and R. de la Llave, {\it The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces}, Indiana Univ. Math. J., 52 (2003), pp. 283-328. · Zbl 1034.37016
[9] X. Cabré, E. Fontich, and R. de la Llave, {\it The parameterization method for invariant manifolds. II. Regularity with respect to parameters}, Indiana Univ. Math. J., 52 (2003), pp. 329-360. · Zbl 1034.37017
[10] X. Cabré, E. Fontich, and R. de la Llave, {\it The parameterization method for invariant manifolds. III. Overview and applications}, J. Differential Equations, 218 (2005), pp. 444-515. · Zbl 1101.37019
[11] R. C. Calleja, A. Celletti, and R. de la Llave, {\it A KAM theory for conformally symplectic systems: Efficient algorithms and their validation}, J. Differential Equations, 255 (2013), pp. 978-1049. · Zbl 1345.37078
[12] M. Canadell and À. Haro, {\it Parameterization method for computing quasi-periodic reducible normally hyperbolic invariant tori}, in Advances in Differential Equations and Applications, SEMA SIMAI Springer Ser. 4, Springer, Berlin, 2014, pp. 85-94. · Zbl 1360.37151
[13] R. Castelli and J.-P. Lessard, {\it A method to rigorously enclose eigenpairs of complex interval matrices}, in Proceedings of Conference Applications of Mathematics 2013, Prague, 2013, pp. 21-31. · Zbl 1340.65057
[14] R. Castelli, J.-P. Lessard, and J. D. M. James, {\it Parameterization of invariant manifolds for periodic orbits I: Efficient numerics via the floquet normal form}, SIAM J. Appl. Dyn. Syst., 14 (2015), pp. 132-167. · Zbl 1376.37057
[15] J. Cyranka, {\it Efficient and generic algorithm for rigorous integration forward in time of dPDEs: Part I}, J. Sci. Comput., 59 (2014), pp. 28-52. · Zbl 1296.65138
[16] S. Day, O. Junge, and K. Mischaikow, {\it A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems}, SIAM J. Appl. Dyn. Syst., 3 (2004), pp. 117-160. · Zbl 1059.37068
[17] S. Day and W. D. Kalies, {\it Rigorous computation of the global dynamics of integrodifference equations with smooth nonlinearities}, SIAM J. Numer. Anal., 51 (2013), pp. 2957-2983. · Zbl 1288.37030
[18] S. Day, J.-P. Lessard, and K. Mischaikow, {\it Validated continuation for equilibria of PDEs}, SIAM J. Numer. Anal., 45 (2007), pp. 1398-1424. · Zbl 1151.65074
[19] R. de la Llave and R. Obaya, {\it Regularity of the composition operator in spaces of Hölder functions}, Discrete Contin. Dyn. Syst., 5 (1999), pp. 157-184. · Zbl 0956.47029
[20] R. de la Llave, A. Olvera, and N. P. Petrov, {\it Combination laws for scaling exponents and relation to the geometry of renormalization operators: The principle of approximate combination of scaling exponents}, J. Stat. Phys., 143 (2011), pp. 889-920. · Zbl 1242.82017
[21] E. J. Doedel and M. J. Friedman, {\it Numerical computation of heteroclinic orbits}, J. Comput. Appl. Math., 26 (1989), pp. 155-170. · Zbl 0673.65082
[22] J.-P. Eckmann, H. Koch, and P. Wittwer, {\it A Computer-Assisted Proof of Universality for Area-Preserving Maps}, Mem. Amer. Math. Soc. 47, AMS, Providence, RI, 1984. · Zbl 0528.58033
[23] J.-P. Eckmann and P. Wittwer, {\it A complete proof of the Feigenbaum conjectures}, J. Stat. Phys., 46 (1987), pp. 455-475. · Zbl 0683.46052
[24] J.-L. Figueras and À. Haro, {\it Reliable computation of robust response tori on the verge of breakdown}, SIAM J. Appl. Dyn. Syst., 11 (2012), pp. 597-628. · Zbl 1253.37077
[25] J.-L. Figueras, À. Haro, and A. Luque, {\it Rigorous Computer Assisted Application of KAM Theory: A Modern Approach}, Indag. Math. (N.S.), 27 (2016), pp. 340-367. · Zbl 1383.37047
[26] M. J. Friedman and E. J. Doedel, {\it Numerical computation and continuation of invariant manifolds connecting fixed points}, SIAM J. Numer. Anal., 28 (1991), pp. 789-808. · Zbl 0735.65054
[27] M. J. Friedman and E. J. Doedel, {\it Computational methods for global analysis of homoclinic and heteroclinic orbits: A case study}, J. Dynam. Differential Equations, 5 (1993), pp. 37-57. · Zbl 0770.34033
[28] D. Gaidashev and T. Johnson, {\it A numerical study of infinitely renormalizable area-preserving maps}, Dyn. Syst., 27 (2012), pp. 283-301. · Zbl 1255.37016
[29] D. Gaidashev and H. Koch, {\it Period doubling in area-preserving maps: An associated one-dimensional problem}, Ergodic Theory Dynam. Systems, 31 (2011), pp. 1193-1228. · Zbl 1225.37053
[30] D. G. Gaidashev, {\it Period doubling renormalization for area-preserving maps and mild computer assistance in contraction mapping principle}, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), pp. 3217-3230. · Zbl 1258.37047
[31] Z. Galias, {\it Krawczyk method for proving the existence of periodic orbits of infinite dimensional discrete dynamical systems}, in Proceedings of EQUADIFF 2003, World Science, Hackensack, NJ, 2005, pp. 657-662. · Zbl 1102.37047
[32] Z. Galias and P. Zgliczyński, {\it Computer assisted proof of chaos in the Lorenz equations}, Phys. D, 115 (1998), pp. 165-188. · Zbl 0941.37018
[33] Z. Galias and P. Zgliczyński, {\it Infinite-dimensional Krawczyk operator for finding periodic orbits of discrete dynamical systems}, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), pp. 4261-4272. · Zbl 1148.37041
[34] M. Gameiro and J.-P. Lessard, {\it Computational Fixed Point Theory for Time Periodic Solutions of PDEs}, in preparation.
[35] M. Gameiro and J.-P. Lessard, {\it Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs}, J. Differential Equations, 249 (2010), pp. 2237-2268. · Zbl 1256.35196
[36] M. Gameiro and J.-P. Lessard, {\it Rigorous computation of smooth branches of equilibria for the three dimensional Cahn-Hilliard equation}, Numer. Math., 117 (2011), pp. 753-778. · Zbl 1216.65145
[37] M. Gameiro and J.-P. Lessard, {\it Efficient rigorous numerics for higher-dimensional PDEs via one-dimensional estimates}, SIAM J. Numer. Anal., 51 (2013), pp. 2063-2087. · Zbl 1277.65084
[38] M. Gameiro, J.-P. Lessard, and K. Mischaikow, {\it Validated continuation over large parameter ranges for equilibria of PDEs}, Math. Comput. Simulation, 79 (2008), pp. 1368-1382. · Zbl 1166.65379
[39] M. Gameiro, J.-P. Lessard, and A. Pugliese, {\it Computation of smooth manifolds of solutions of PDEs via rigorous multi-parameter continuation}, Found. Comput. Math., 16 (2016), pp. 531-575. · Zbl 1347.65102
[40] J. Hadamard, {\it Sur le module maximum d’une fonction et de ses derives}, Bull. Soc. Math. France, 42 (1898), pp. 68-72.
[41] A. Haro, {\it Automatic Differentiation Methods in Computational Dynamical Systems: Invariant Manifolds and Normal Forms of Vector Fields at Fixed Points}, manuscript.
[42] A. Haro, M. Canadell, J.-L. Figueras, A. Luque, and J.-M. Mondelo, {\it The Parameterization Method for Invariant Manifolds: From Theory to Effective Computations}, vol. 2014, preprint; also available online from http://www.maia.ub.es/\(~\) alex. · Zbl 1372.37002
[43] À. Haro and R. de la Llave, {\it A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms}, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 1261-1300. · Zbl 1296.37048
[44] A. Hungria, J.-P. Lessard, and J. D. Mireles-James, {\it Rigorous numerics for analytic solutions of differential equations: The radii polynomial approach}, Math. Comp., 85 (2015), pp. 1427-1459. · Zbl 1332.65114
[45] J. D. Mireles James, {\it Fourier-Taylor Approximation of Unstable Manifolds for Compact Maps: Numerical Implementation and Computer Assisted Error Bounds}, submitted. · Zbl 1383.37066
[46] J. D. Mireles James, {\it MATLAB Codes for “Connecting Orbits for Compact Infinite Dimensional Maps: Computer Assisted Proofs of Existence,”} available online from http://cosweb1.fau.edu/\string jmirelesjames/infiniteDimMapConnectionsPage.html. · Zbl 1343.37078
[47] H. Koch, {\it Existence of critical invariant tori}, Ergodic Theory Dynam. Systems, 28 (2008), pp. 1879-1894. · Zbl 1154.37021
[48] H. Koch, {\it On Hyperbolicity in the Renormalization of Near-Critical Area-Preserving Maps}, 2014, submitted; also available online from http://www.ma.utexas.edu/mp_arc/c/14/14-70.pdf.
[49] H. Koch, A. Schenkel, and P. Wittwer, {\it Computer-assisted proofs in analysis and programming in logic: A case study}, SIAM Rev., 38 (1996), pp. 565-604. · Zbl 0865.68111
[50] M. Kot, {\it Discrete-time travelling waves: Ecological examples}, J. Math. Biol., 30 (1992), pp. 413-436. · Zbl 0825.92126
[51] M. Kot and W. M. Schaffer, {\it Discrete-time growth-dispersal models}, Math. Biosci., 80 (1986), pp. 109-136. · Zbl 0595.92011
[52] E. Landau, {\it Einige ungleichungen für zweimal differentiarbare funktionen}, Proc. Lond. Math. Soc., 13 (1896), pp. 43-58. · JFM 44.0463.02
[53] O. E. Lanford, III, {\it A computer-assisted proof of the Feigenbaum conjectures}, Bull. Amer. Math. Soc. (N.S.), 6 (1982), pp. 427-434. · Zbl 0487.58017
[54] O. E. Lanford III, {\it Bifurcation of periodic solutions into invariant tori: The work of Ruelle and Takens}, in Nonlinear Problems in the Physical Sciences and Biology: Proceedings of a Battelle Summer Institute, I. Stakgold, D. D. Joseph, and D. H. Sattinger, eds., Lecture Notes in Math. 322, Springer, Berlin, 1973, pp. 159-192. · Zbl 0272.34039
[55] J. Lessard and J. B. van den Berg, {\it Rigorous numerics in dynamics}, Notices Amer. Math. Soc., 62 (2015), pp. 1057-1061. · Zbl 1338.68301
[56] J.-P. Lessard, {\it Validated Continuation for Infinite Dimensional Problems}, Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA, 2007.
[57] J.-P. Lessard, J. D. Mireles James, and C. Reinhardt, {\it Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields}, J. Dynam. Differential Equations, 26 (2014), pp. 267-313. · Zbl 1351.37107
[58] J. Medlock and M. Kot, {\it Spreading disease: Integro-differential equations old and new}, Math. Biosci., 184 (2003), pp. 201-222. · Zbl 1036.92030
[59] J. D. Mireles James, {\it Quadratic volume-preserving maps: (Un)stable manifolds, hyperbolic dynamics, and vortex-bubble bifurcations}, J. Nonlinear Sci., 23 (2013), pp. 585-615. · Zbl 1277.37035
[60] J. D. Mireles James, {\it Computer assisted error bounds for linear approximation of (un)stable manifolds and rigorous validation of higher dimensional transverse connecting orbits}, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), pp. 1102-1133. · Zbl 1329.37081
[61] J. D. Mireles-James, {\it Polynomial approximation of one parameter families of (un)stable manifolds with rigorous computer assisted error bounds}, Indag. Math. (N.S.), 26 (2014). · Zbl 1359.37063
[62] J. D. Mireles James and H. Lomelí, {\it Computation of heteroclinic arcs with application to the volume preserving Hénon family}, SIAM J. Appl. Dyn. Syst., 9 (2010), pp. 919-953. · Zbl 1207.37014
[63] J. D. Mireles James and K. Mischaikow, {\it Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps}, SIAM J. Appl. Dyn. Syst., 12 (2013), pp. 957-1006. · Zbl 1330.37029
[64] J. D. Mireles-James and K. Mischaikow, {\it Computational proofs in dynamics}, Encyclopedia Appl. Comput. Math., B. Engquist, ed., Springer, Berlin, 2015.
[65] J. D. Mireles James and J. B. Van den Berg, {\it Parameterization of Slow-Stable Manifolds and their Invariant Vector Bundles: Theory and Numerical Implementation}, Discrete Contin. Dyn. Syst., 36 (2016), pp. 4637-4664, http://dx.doi.org/10.3934/dcds.2016002 doi:10.3934/dcds.2016002. · Zbl 1366.37070
[66] K. Mischaikow and M. Mrozek, {\it Chaos in the Lorenz equations: A computer-assisted proof}, Bull. Amer. Math. Soc. (N.S.), 32 (1995), pp. 66-72. · Zbl 0820.58042
[67] K. Mischaikow and M. Mrozek, {\it Chaos in the Lorenz equations: A computer assisted proof. II. Details}, Math. Comp., 67 (1998), pp. 1023-1046. · Zbl 0913.58038
[68] A. Neumaier and T. Rage, {\it Rigorous chaos verification in discrete dynamical systems}, Phys. D, 67 (1993), pp. 327-346. · Zbl 0783.58047
[69] S. Rump, {\it INTLAB–INTerval LABoratory}, in Developments in Reliable Computing, T. Csendes, ed., Kluwer Academic, Dordrecht, 1999, pp. 77-104; also available online from http://www.ti3.tu-harburg.de/rump/. · Zbl 0949.65046
[70] D. Stoffer and K. J. Palmer, {\it Rigorous verification of chaotic behaviour of maps using validated shadowing}, Nonlinearity, 12 (1999), pp. 1683-1698. · Zbl 0988.37041
[71] R. Szczelina and P. Zgliczyński, {\it A homoclinic orbit in a planar singular ODE–A computer assisted proof}, SIAM J. Appl. Dyn. Syst., 12 (2013), pp. 1541-1565. · Zbl 1284.34070
[72] W. Tucker, {\it The Lorenz attractor exists}, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), pp. 1197-1202. · Zbl 0935.34050
[73] W. Tucker, {\it A rigorous ODE Solver and Smale’s \(14\) th Problem}, Found. Comput. Math., 2 (2002), pp. 53-117. · Zbl 1047.37012
[74] J. B. van den Berg, A. Deschênes, J.-P. Lessard, and J. D. Mireles James, {\it Stationary coexistence of hexagons and rolls via rigorous computations}, SIAM J. Appl. Dyn. Syst., 14 (2015), pp. 942-979, http://dx.doi.org/10.1137/140984506 doi:10.1137/140984506. · Zbl 1371.37036
[75] J. B. van den Berg and J.-P. Lessard, {\it Chaotic braided solutions via rigorous numerics: Chaos in the Swift-Hohenberg equation}, SIAM J. Appl. Dyn. Syst., 7 (2008), pp. 988-1031. · Zbl 1408.37062
[76] J. B. van den Berg, J. D. Mireles-James, J.-P. Lessard, and K. Mischaikow, {\it Rigorous numerics for symmetric connecting orbits: Even homoclinics of the Gray-Scott equation}, SIAM J. Math. Anal., 43 (2011), pp. 1557-1594. · Zbl 1231.34081
[77] J. B. Van den Berg, J. D. Mireles James, and C. Reinhardt, {\it Computing (Un)stable Manifolds with Validated Error Bounds: Non-resonant and Resonant Spectra}, J. Nonlinear Sci., (2015), http://dx.doi.org/10.1007/s00332-016-9298-5 doi:10.1007/s00332-016-9298-5. · Zbl 1360.37176
[78] E. B. Vul, Y. G. Sinaĭ, and K. M. Khanin, {\it Feigenbaum universality and thermodynamic formalism}, Uspekhi Mat. Nauk, 39 (1984), pp. 3-37.
[79] M.-H. Wang, M. Kot, and M. G. Neubert, {\it Integrodifference equations, Allee effects, and invasions}, J. Math. Biol., 44 (2002), pp. 150-168. · Zbl 0991.92032
[80] D. Wilczak, {\it Symmetric heteroclinic connections in the Michelson system: A computer assisted proof}, SIAM J. Appl. Dyn. Syst., 4 (2005), pp. 489-514. · Zbl 1120.34033
[81] D. Wilczak, {\it The existence of Shilnikov homoclinic orbits in the Michelson system: A computer assisted proof}, Found. Comput. Math., 6 (2006), pp. 495-535. · Zbl 1130.37415
[82] D. Wilczak, {\it Symmetric homoclinic solutions to the periodic orbits in the Michelson system}, Topol. Methods Nonlinear Anal., 28 (2006), pp. 155-170. · Zbl 1113.34032
[83] D. Wilczak and P. Zgliczynski, {\it Heteroclinic connections between periodic orbits in planar restricted circular three-body problem–a computer assisted proof}, Comm. Math. Phys., 234 (2003), pp. 37-75. · Zbl 1055.70005
[84] A. Wittig, M. Berz, J. Grote, K. Makino, and S. Newhouse, {\it Rigorous and accurate enclosure of invariant manifolds on surfaces}, Regul. Chaotic Dyn., 15 (2010), pp. 107-126. · Zbl 1203.37030
[85] N. Yamamoto, {\it A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem}, SIAM J. Numer. Anal., 35 (1998), pp. 2004-2013. · Zbl 0972.65084
[86] P. Zgliczyński, {\it Rigorous numerics for dissipative partial differential equations. II. Periodic orbit for the Kuramoto-Sivashinsky PDE–a computer-assisted proof}, Found. Comput. Math., 4 (2004), pp. 157-185. · Zbl 1066.65105
[87] P. Zgliczyński, {\it Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs}, Topol. Methods Nonlinear Anal., 36 (2010), pp. 197-262. · Zbl 1230.65113
[88] Y. Zhou and M. Kot, {\it Life on the move: Modeling the effects of climate-driven range shifts with integrodifference equations}, in Dispersal, Individual Movement and Spatial Ecology, Lecture Notes in Math. 2071, Springer, Berlin, 2013, pp. 263-292. · Zbl 1347.92110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.