×

An efficient quadrature method for vibration analysis of thin elliptical plates with continuous and discontinuous edge conditions. (English) Zbl 1486.74135

Summary: Mapping an irregular domain into a square one is a common technique in analyzing problems of plates and shells with irregular shapes. For the irregular shape without four corners such as the elliptical shape, the difficulty arises that the Jacobian determinant is zero at the corner points. An efficient quadrature method is presented to analyze the transverse vibration of thin plates with an elliptical shape. To circumvent the above-mentioned difficulty, Gauss quadrature is used in numerical integration. Besides, derivative degrees of freedom are not used, and a boundary point is modeled by two nodes separated by a very small distance. Since the nodes are not coinciding with integration points, a way indirectly using the differential quadrature law is employed to derive the explicit formulas to ease the programming. A convergence study is performed. Free vibration of elliptical plates with continuous and discontinuous edge conditions is analyzed to demonstrate the efficiency of the developed rotation-free weak-form quadrature method.

MSC:

74S99 Numerical and other methods in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
74K20 Plates
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
65D30 Numerical integration

Software:

FEAPpv
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bathe, KJ, Finite Element Procedures in Engineering Analysis (1982), Englewood Cliffs, New Jersey: Prentice-Hall Inc, Englewood Cliffs, New Jersey
[2] Yang, TY, Finite Element Structural Analysis (1986), Englewood Cliffs, New Jersey: Prentice-Hall Inc, Englewood Cliffs, New Jersey
[3] Zienkiewicz, OC; Taylor, RL, The Finite Element Method for Solid and Structural Mechanics (2005), Oxford: Elsevier, Oxford · Zbl 1084.74001
[4] Duong, TX; Roohbakhshan, F.; Sauer, RA, A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries, Comput. Methods Appl. Mech. Eng., 316, 43-83 (2017) · Zbl 1439.74409 · doi:10.1016/j.cma.2016.04.008
[5] Zhong, H.; Yue, ZG, Analysis of thin plates by the weak form quadrature element method, Sci. China Phys. Mech., 55, 861-871 (2012) · doi:10.1007/s11433-012-4684-y
[6] Cheung, YK; Tham, LG; Li, WY, Free vibration and static analysis of general plates by spline finite strip method, Comput. Mech., 3, 187-197 (1988) · Zbl 0631.73065 · doi:10.1007/BF00297445
[7] Li, WY; Cheung, YK; Tham, LG, Spline finite strip analysis of general plates, ASCE J. Eng. Mech., 112, 43-54 (1986) · doi:10.1061/(ASCE)0733-9399(1986)112:1(43)
[8] Wei, GW, Discrete singular convolution for the solution of the Fokker-Planck equations, J. Chem. Phys., 110, 8930-8942 (1999) · doi:10.1063/1.478812
[9] Wei, GW, Discrete singular convolution for beam analysis, Eng. Struct., 23, 1045-1053 (2001) · doi:10.1016/S0141-0296(01)00016-5
[10] Wei, GW; Zhao, YB; Xiang, Y., A novel approach for the analysis of high-frequency vibrations, J. Sound Vib., 257, 207-246 (2002) · doi:10.1006/jsvi.2002.5055
[11] Wang, X.; Yuan, Z.; Deng, J., A review on the discrete singular convolution algorithm and its applications in structural mechanics and engineering, Arch Comput. Method E, 27, 5, 1633-1660 (2020) · doi:10.1007/s11831-019-09365-5
[12] Civalek, Ö., Use of eight-node curvilinear domains in discrete singular convolution method for free vibration analysis of annular sector plates with simply supported radial edges, J. Vib. Control, 16, 303-320 (2010) · Zbl 1269.74085 · doi:10.1177/1077546309104190
[13] Gürses, M.; Akgöz, B.; Civalek, Ö., Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation, Appl. Math. Comput., 219, 3226-3240 (2012) · Zbl 1309.74034
[14] Akgöz, B.; Civalek, Ö., Static and dynamic response of sector-shaped graphene sheets, Mech. Adv. Mater. Struct., 23, 432-442 (2016) · doi:10.1080/15376494.2014.984089
[15] Tornabene, F.; Fantuzzi, N.; Ubertini, F.; Viola, E., Strong formulation finite element method based on differential quadrature: a survey, Appl. Mech. Rev., 67, 020801 (2015) · doi:10.1115/1.4028859
[16] Bert, CW; Malik, M., The differential quadrature method for irregular domains and application to plate vibration, Int. J. Mech. Sci., 38, 589-606 (1996) · Zbl 0857.73077 · doi:10.1016/S0020-7403(96)80003-8
[17] Saviz, MR, Electro-elasto-dynamic analysis of functionally graded cylindrical shell with piezoelectric rings using differential quadrature method, Acta Mech., 228, 1645-1670 (2017) · Zbl 1369.74031 · doi:10.1007/s00707-016-1746-7
[18] Shojaee, M.; Setoodeh, AR; Malekzadeh, P., Vibration of functionally graded CNTs-reinforced skewed cylindrical panels using a transformed differential quadrature method, Acta Mech., 228, 2691-2711 (2017) · Zbl 1369.74046 · doi:10.1007/s00707-017-1846-z
[19] Cai, D.; Zhou, G.; Wang, X., On mapping irregular plates without four corners into a regular domain, Appl. Math. Lett., 117, 107082 (2021) · Zbl 1462.74150 · doi:10.1016/j.aml.2021.107082
[20] Xing, Y.; Liu, B., High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain, Int. J. Numer. Methods Eng., 80, 1718-1742 (2009) · Zbl 1183.74328 · doi:10.1002/nme.2685
[21] Striz, AG; Chen, WL; Bert, CW, Free vibration of plates by the high accuracy quadrature element method, J. Sound Vib., 202, 689-702 (1997) · Zbl 1235.74124 · doi:10.1006/jsvi.1996.0846
[22] Wang, X.; Yuan, Z.; Jin, C., Weak form quadrature element method and its applications in science and engineering: a state-of-the-art review, Appl. Mech. Rev., 69, 030801 (2017) · doi:10.1115/1.4036634
[23] Zhang, R.; Zhong, H.; Yao, X.; Han, Q., A quadrature element formulation of geometrically nonlinear laminated composite shells incorporating thickness stretch and drilling rotation, Acta Mech., 231, 1685-1709 (2020) · Zbl 1440.74214 · doi:10.1007/s00707-019-02606-5
[24] Wang, X.; Yuan, Z.; Jin, C., A general integration scheme in quadrature element method, Appl. Math. Lett., 105, 106305 (2020) · Zbl 1433.74121 · doi:10.1016/j.aml.2020.106305
[25] Jin, C.; Wang, X.; Ge, L., Novel weak form quadrature element method with expanded Chebyshev nodes, Appl. Math. Lett., 34, 51-59 (2014) · Zbl 1314.74063 · doi:10.1016/j.aml.2014.03.015
[26] Onate, E.; Zarate, F., Rotation-free triangular plate and shell elements, Int. J. Numer. Methods Eng., 47, 557-603 (2000) · Zbl 0968.74070 · doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<557::AID-NME784>3.0.CO;2-9
[27] Brunet, M.; Sabourin, F., Analysis of a rotation-free 4-node shell element, Int. J. Numer. Methods Eng., 66, 1483-1510 (2006) · Zbl 1113.74419 · doi:10.1002/nme.1608
[28] Nguyen-Thanh, N.; Zhou, K.; Zhuang, X.; Areias, P.; Nguyen-Xuan, H.; Bazilevs, Y.; Rabczuk, T., Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling, Comput. Methods Appl. Mech. Eng., 316, 1157-1178 (2017) · Zbl 1439.74455 · doi:10.1016/j.cma.2016.12.002
[29] Wang, X.; Striz, AG; Bert, CW, Free vibration analysis of annular plates by the DQ method, J. Sound Vib., 164, 173-175 (1993) · doi:10.1006/jsvi.1993.1202
[30] Timoshenko, S.; Woinowsky-Krieger, S., Theory of Plates and Shells (1959), New York: McGraw-Hill, New York · Zbl 0114.40801
[31] Duan, G.; Wang, X.; Jin, C., Free vibration analysis of circular thin plates with stepped thickness by the DSC element method, Thin-Walled Struct., 85, 25-33 (2014) · doi:10.1016/j.tws.2014.07.010
[32] Civalek, Ö., Discrete singular convolution method and applications to free vibration analysis of circular and annular plates, Struct. Eng. Mech., 29, 2, 237-240 (2008) · doi:10.12989/sem.2008.29.2.237
[33] Huang, CS; Leissa, AW; McGee, OG, Exact analytical solutions for the vibrations of sectorial plates with simply supported radial edges, J. Appl. Mech., 60, 478-483 (1993) · Zbl 0784.73051 · doi:10.1115/1.2900818
[34] Wang, X.; Yuan, Z., Techniques for vibration analysis of hybrid beam and ring structures with variable thickness, Comput. Struct., 206, 109-121 (2018) · doi:10.1016/j.compstruc.2018.05.012
[35] Wang, X., Differential quadrature and differential quadrature based element methods: Theory and applications (2015), Oxford: Butterworth-Heinemann, Oxford · Zbl 1360.74003
[36] Boyd, JP, A numerical comparison of seven grids for polynomial interpolation on the interval, Comput. Math. Appl., 38, 35-50 (1999) · Zbl 0949.65009 · doi:10.1016/S0898-1221(99)00204-7
[37] Wang, X.; Yuan, Z., Three-dimensional vibration analysis of curved and twisted beams with irregular shapes of cross-sections by sub-parametric quadrature element method, Comput. Math. Appl., 76, 1486-1499 (2018) · Zbl 1434.65279 · doi:10.1016/j.camwa.2018.07.001
[38] Lam, KY; Liew, KM; Chow, ST, Use of two-dimensional orthogonal polynomials for vibration analysis of circular and elliptical plates, J. Sound Vib., 154, 261-269 (1992) · Zbl 0920.73210 · doi:10.1016/0022-460X(92)90580-Q
[39] Leissa, AW; Narita, Y., Natural frequencies of simply supported circular plates, J. Sound Vib., 70, 221-229 (1980) · Zbl 0428.73056 · doi:10.1016/0022-460X(80)90598-2
[40] Narita, Y., Free vibration analysis of orthotropic elliptical plates resting on arbitrarily distributed point supports, J. Sound Vib., 108, 1-10 (1986) · doi:10.1016/S0022-460X(86)80306-6
[41] Narita, Y., Natural frequencies of free, orthotropic elliptical plates, J. Sound Vib., 100, 83-89 (1985) · doi:10.1016/0022-460X(85)90344-X
[42] Kim, CS; Dickinson, SM, On the lateral vibration of thin annular and circular composite plates subject to certain complicating effects, J. Sound Vib., 130, 363-377 (1989) · doi:10.1016/0022-460X(89)90063-1
[43] Singh, B.; Chakraverty, S., On the use of orthogonal polynomials in the Rayleigh-Ritz method for the study of transverse vibration of elliptic plates, Comput. Struct., 43, 439-443 (1992) · Zbl 0775.73350 · doi:10.1016/0045-7949(92)90277-7
[44] Jin, C.; Wang, X., Accurate free vibration of functionally graded skew plates, T. Nanjing Univ. Aeronaut. Astronaut., 34, 188-194 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.