×

Analogue gravity. (English) Zbl 1316.83022

Summary: Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).
Update to the authors’ paper [Zbl 1255.83014]: Completely revised and updated previous version. Significantly extended Sections 2.4, 3, 4.1, 4.2, 5, and 7. Introduced new Section 6. Eight new figures have been added. The number of references increased from 434 to 702.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83-03 History of relativity and gravitational theory
01A60 History of mathematics in the 20th century

Citations:

Zbl 1255.83014
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abdalla, E., Konoplya, R.A. and Zhidenko, A., ”Perturbations of Schwarzschild black holes in laboratories”, Class. Quantum Gram., 24, 5901–5910, (2007). [DOI], [arXiv:0706.2489 [hep-th]]. (Cited on page 45.) · Zbl 1130.83314 · doi:10.1088/0264-9381/24/23/012
[2] Abraham, H., Bilic, N. and Das, T.K., ”Acoustic horizons in axially symmetric relativistic accretion”, Class. Quantum Grav., 23, 2371–2393, (2006). [DOI], [arXiv:gr-qc/0509057]. (Cited on page 44.) · Zbl 1102.83310 · doi:10.1088/0264-9381/23/7/010
[3] Alù, A. and Engheta, N., ”Cloaking a Sensor”, Phys. Rev. Lett., 102, 233901, (2009). [DOI]. (Cited on page 97.) · doi:10.1103/PhysRevLett.102.233901
[4] Amati, D. and Russo, J.G., ”Black holes by analytic continuation”, Phys. Rev. D, 56, 974–982, (1997). [DOI], [hep-th/9602125]. (Cited on page 89.) · Zbl 0942.83038 · doi:10.1103/PhysRevD.56.974
[5] Ambrosetti, N., Charbonneau, J. and Weinfurtner, S., ”The fluid/gravity correspondence: Lectures notes from the 2008 Summer School on Particles, Fields, and Strings”, arXiv e-print, (2008). [arXiv:0810.2631 [gr-qc]]. (Cited on page 46.)
[6] Amelino-Camelia, G., Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V. and Sarkar, S., ”Potential Sensitivity of Gamma-Ray Burster Observations to Wave Dispersion in Vacuo”, Nature, 393, 763–765, (1998). [astro-ph/9712103]. (Cited on page 110.) · doi:10.1038/31647
[7] Anderson, J.L. and Spiegel, E.A., ”Radiative transfer through a flowing refractive medium”, Astrophys. J., 202, 454–464, (1975). [DOI], [ADS]. (Cited on page 41.) · doi:10.1086/153995
[8] Anderson, T.H., Mackay, T.G. and Lakhtakia, A., ”Ray trajectories for a spinning cosmic string and a manifestation of self-cloaking”, Phys. Lett. A, 374, 4637–4641, (2010). [DOI], [arXiv:arXiv:1007.3113 [physics.optics]]. (Cited on page 27.) · Zbl 1238.83060 · doi:10.1016/j.physleta.2010.09.053
[9] Anglin, J.R., ”Influence functionals and the accelerating detector”, Phys. Rev. D, 47, 4525–4537, (1993). [DOI], [hep-th/9210035]. (Cited on page 48.) · doi:10.1103/PhysRevD.47.4525
[10] Antunes, N.D., ”Numerical simulation of vacuum particle production: applications to cosmology, dynamical Casimir effect and time-dependent non-homogeneous dielectrics”, arXiv e-print, (2003). [hep-ph/0310131]. (Cited on page 48.)
[11] Arbona, A., ”Is a classical Euclidean TOE reasonable?”, arXiv e-print, (2003). [gr-qc/0310007]. (Cited on page 48.)
[12] Arteaga, D., Parentani, R. and Verdaguer, E., ”Propagation in a thermal graviton background”, Phys. Rev. D, 70, 044019, (2004). [DOI], [gr-qc/0311065]. (Cited on page 48.) · doi:10.1103/PhysRevD.70.044019
[13] Aspachs, M., Adesso, G. and Fuentes, I., ”Optimal Quantum Estimation of the Unruh-Hawking Effect”, Phys. Rev. Lett., 105, 151301, (2010). [DOI], [arXiv:1007.0389 [quant-ph]]. (Cited on page 47.) · doi:10.1103/PhysRevLett.105.151301
[14] Babichev, E., Mukhanov, V. and Vikman, A., ”Looking beyond the horizon”, in Kleinert, H., Jantzen, R.T. and Ruffini, R., eds., The Eleventh Marcel Grossmann Meeting On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the MG11 Meeting on General Relativity, Berlin, Germany, 23–29 July 2006, pp. 1471–1474, (World Scientific, River Edge, NJ; Singapore, 2007). [DOI], [arXiv:0704.3301 [hep-th]]. Online version (accessed 22 March 2011): http://eproceedings.worldscinet.com/9789812834300/9789812834300_0171.html. (Cited on page 45.)
[15] Babichev, E., Mukhanov, V. and Vikman, A., ”’Superluminal’ scalar fields and black holes”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11–15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). URL (accessed 13 December 2010): http://pos.sissa.it/contribution?id=PoS(QG-Ph)006. (Cited on page 45.)
[16] Babichev, E., Mukhanov, V. and Vikman, A., ”k-Essence, superluminal propagation, causality and emergent geometry”, J. High Energy Phys., 2008(02), 101, (2008). [DOI], [arXiv:0708.0561 [hep-th]]. (Cited on page 45.) · doi:10.1088/1126-6708/2008/02/101
[17] Badulin, S.I., Pokazayev, K.V. and Rozenberg, A.D., ”A laboratory study of the transformation of regular gravity-capillary waves in inhomogeneous flows”, Izv. Atmos. Ocean. Phys., 19(10), 782–787, (1983). (Cited on pages 42, 53, 54, 99, and 111.)
[18] Balazs, N.L., ”Effect of a gravitational field, due to a rotating body, on the plane of polarization of an electromagnetic wave”, Phys. Rev., 110, 236–239, (1958). [DOI]. (Cited on page 40.) · Zbl 0080.41604 · doi:10.1103/PhysRev.110.236
[19] Balbinot, R., Carusotto, I., Fabbri, A. and Recati, A., ”Testing Hawking particle creation by black holes through correlation measurements”, Int. J. Mod. Phys. D, 19, 2371–2377, (2010). [DOI], [arXiv:1005.4000 [gr-qc]]. (Cited on pages 47 and 87.) · Zbl 1213.83081 · doi:10.1142/S0218271810018463
[20] Balbinot, R., Fabbri, A., Fagnocchi, S. and Nagar, A., ”Numerical analysis of backreaction in acoustic black holes”, Nuovo Cimento B, 121, 201–212, (2006). [DOI], [arXiv:gr-qc/0601083]. (Cited on page 45.)
[21] Balbinot, R., Fabbri, A., Fagnocchi, S. and Parentani, R., ”Hawking radiation from acoustic black holes, short distance and back-reaction effects”, Riv. Nuovo Cimento, 028(03), 1–55, (2005). [arXiv:gr-qc/0601079]. (Cited on pages 9 and 44.)
[22] Balbinot, R., Fabbri, A., Fagnocchi, S., Recati, A. and Carusotto, I., ”Non-local density correlations as signal of Hawking radiation in BEC acoustic black holes”, Phys. Rev. A, 78, 021603, (2008). [DOI], [arXiv:0711.4520 [cond-mat.other]]. (Cited on pages 45 and 87.) · doi:10.1103/PhysRevA.78.021603
[23] Balbinot, R., Fagnocchi, S. and Fabbri, A., ”Quantum effects in acoustic black holes: The backreaction”, Phys. Rev. D, 71, 064019, 1–11, (2004). [gr-qc/0405098]. (Cited on pages 44 and 102.)
[24] Balbinot, R., Fagnocchi, S. and Fabbri, A., ”The depletion in Bose Einstein condensates using Quantum Field Theory in curved space”, Phys. Rev. A, 75, 043622, (2007). [DOI], [arXiv:cond-mat/0610367]. (Cited on page 45.) · doi:10.1103/PhysRevA.75.043622
[25] Balbinot, R., Fagnocchi, S., Fabbri, A. and Procopio, G.P., ”Backreaction in Acoustic Black Holes”, Phys. Rev. Lett., 95, 161302, 1–4, (2004). [gr-qc/0405096]. (Cited on pages 44 and 102.)
[26] Baldovin, F., Novello, M., Perez Bergliaffa, S.E. and Salim, J.M., ”A nongravitational worm-hole”, Class. Quantum Grav., 17, 3265–3276, (2000). [DOI], [gr-qc/0003075]. (Cited on page 43.) · Zbl 0967.83032 · doi:10.1088/0264-9381/17/16/311
[27] Barceló, C., ”Cosmology as a search for overall equilibrium”, J. Exp. Theor. Phys. Lett., 84, 635–639, (2007). [DOI], [arXiv:gr-qc/0611090]. (Cited on page 108.) · doi:10.1134/S0021364006240015
[28] Barceló, C. and Campos, A., ”Braneworld physics from the analog-gravity perspective”, Phys. Lett. B, 563, 217–223, (2003). [DOI], [hep-th/0206217]. (Cited on page 43.) · Zbl 1037.81570 · doi:10.1016/S0370-2693(03)00646-4
[29] Barceló, C., Cano, A., Garay, L.J. and Jannes, G., ”Stability analysis of sonic horizons in Bose-Einstein condensates”, Phys. Rev. D, 74, 024008, (2006). [DOI], [arXiv:gr-qc/0603089]. (Cited on pages 45, 85, 92, and 94.) · doi:10.1103/PhysRevD.74.024008
[30] Barceló, C., Cano, A., Garay, L.J. and Jannes, G., ”Quasi-normal mode analysis in BEC acoustic black holes”, Phys. Rev. D, 75, 084024, (2007). [DOI], [arXiv:gr-qc/0701173]. (Cited on pages 45 and 94.) · doi:10.1103/PhysRevD.75.084024
[31] Barcelo, C., Cano, A., Jannes, G. and Garay, L.J., ”Probing effects of modified dispersion relations with Bose-Einstein condensates”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11–15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). URL (accessed 13 December 2010): http://pos.sissa.it/contribution?id=PoS(QG-Ph)007. (Cited on page 45.)
[32] Barceló, C., Finazzi, S. and Liberati, S., ”On the impossibility of superluminal travel: the warp drive lesson”, arXiv e-print, (2010). [arXiv:1001.4960 [gr-qc]]. (Cited on page 47.)
[33] Barceló, C., Garay, L.J. and Jannes, G., ”Sensitivity of Hawking radiation to superluminal dispersion relations”, Phys. Rev. D, 79, 024016, (2009). [DOI], [arXiv:0807.4147 [gr-qc]]. (Cited on page 46.) · Zbl 1222.83088 · doi:10.1103/PhysRevD.79.024016
[34] Barceló, C., Garay, L.J. and Jannes, G., ”Quantum Non-Gravity”, arXiv e-print, (2010). [arXiv:1002.4651 [gr-qc]]. (Cited on page 47.)
[35] Barceló, C., Garay, L.J. and Jannes, G., ”The two faces of quantum sound”, Phys. Rev. D, 82, 044042, (2010). [DOI], [arXiv:1006.0181 [gr-qc]]. (Cited on pages 47, 80, 83, and 85.) · doi:10.1103/PhysRevD.82.044042
[36] Barceló, C. and Jannes, G., ”A real Lorentz-FitzGerald contraction”, Found. Phys., 38, 191–199, (2008). [DOI], [arXiv:0705.4652 [gr-qc]]. (Cited on pages 45 and 105.) · Zbl 1137.83306 · doi:10.1007/s10701-007-9196-7
[37] Barceló, C., Liberati, S., Sonego, S. and Visser, M., ”Causal structure of analogue spacetimes”, New J. Phys., 6, 186, (2004). [DOI]. URL (accessed 31 May 2005): http://stacks.iop.org/NJP/6/186. (Cited on pages 20, 29, 44, 79, 87, and 92.) · doi:10.1088/1367-2630/6/1/186
[38] Barceló, C., Liberati, S., Sonego, S. and Visser, M., ”Hawking-like radiation does not require a trapped region”, Phys. Rev. Lett., 97, 171301, (2006). [DOI], [arXiv:gr-qc/0607008]. (Cited on page 45.) · Zbl 1228.83058 · doi:10.1103/PhysRevLett.97.171301
[39] Barceló, C., Liberati, S., Sonego, S. and Visser, M., ”Quasi-particle creation by analogue black holes”, Class. Quantum Grav., 23, 5341–5366, (2006). [DOI], [arXiv:gr-qc/0604058]. (Cited on page 45.) · Zbl 1112.83026 · doi:10.1088/0264-9381/23/17/014
[40] Barceló, C., Liberati, S., Sonego, S. and Visser, M., ”Fate of gravitational collapse in semi-classical gravity”, Phys. Rev. D, 77, 044032, (2008). [DOI], [arXiv:0712.1130 [gr-qc]]. (Cited on pages 45 and 46.) · doi:10.1103/PhysRevD.77.044032
[41] Barceló, C., Liberati, S., Sonego, S. and Visser, M., ”Hawking-like radiation from evolving black holes and compact horizonless objects”, J. High Energy Phys., 2010(02), 003, (2010). [DOI], [arXiv:1011.5911 [gr-qc]]. (Cited on page 87.) · Zbl 1294.83034
[42] Barceló, C., Liberati, S., Sonego, S. and Visser, M., ”Minimal conditions for the existence of a Hawking-like flux”, Phys. Rev. D, 83, 041501(R), (2010). [DOI], [arXiv:1011.5593 [gr-qc]]. (Cited on page 87.) · Zbl 1228.83058 · doi:10.1103/PhysRevD.83.041501
[43] Barceló, C., Liberati, S. and Visser, M., ”Analog gravity from Bose-Einstein condensates”, Class. Quantum Grav., 18, 1137–1156, (2001). [DOI], [gr-qc/0011026]. (Cited on page 43.) · Zbl 1015.82019 · doi:10.1088/0264-9381/18/6/312
[44] Barceló, C., Liberati, S. and Visser, M., ”Analog gravity from field theory normal modes?”, Class. Quantum Grav., 18, 3595–3610, (2001). [DOI], [gr-qc/0104001]. (Cited on pages 36, 38, and 43.) · Zbl 1010.83056 · doi:10.1088/0264-9381/18/17/313
[45] Barceló, C., Liberati, S. and Visser, M., ”Refringence, field theory, and normal modes”, Class. Quantum Grav., 19, 2961–2982, (2002). [gr-qc/0111059]. (Cited on pages 43, 59, 63, and 103.) · Zbl 1004.83039 · doi:10.1088/0264-9381/19/11/314
[46] Barceló, C., Liberati, S. and Visser, M., ”Analogue models for FRW cosmologies”, Int. J. Mod. Phys. D, 12, 1641–1650, (2003). [DOI], [gr-qc/0305061]. (Cited on pages 30, 32, 44, and 96.) · doi:10.1142/S0218271803004092
[47] Barceló, C., Liberati, S. and Visser, M., ”Probing semiclassical analogue gravity in Bose-Einstein condensates with widely tunable interactions”, Phys. Rev. A, 68, 053613, (2003). [DOI], [cond-mat/0307491]. (Cited on pages 30, 32, 44, 63, and 96.) · doi:10.1103/PhysRevA.68.053613
[48] Barceló, C., Liberati, S. and Visser, M., ”Towards the Observation of Hawking Radiation in Bose-Einstein Condensates”, Int. J. Mod. Phys. A, 18, 3735-1–11, (2003). [DOI], [gr-qc/0110036]. (Cited on pages 43, 63, 79, 80, 87, and 100.) · Zbl 1042.83018 · doi:10.1142/S0217751X0301615X
[49] Barceló, C., Liberati, S. and Visser, M., ”Analogue Gravity”, Living Rev. Relativity, 8, lrr-2005-12, (2005). [arXiv:gr-qc/0505065]. URL (accessed 13 December 2010): http://www.livingreviews.org/lrr-2005-12. (Cited on page 44.) · Zbl 1255.83014
[50] Barceló, C., Visser, M. and Liberati, S., ”Einstein gravity as an emergent phenomenon?”, Int. J. Mod. Phys. D, 10, 799–806, (2001). [DOI], [gr-qc/0106002]. (Cited on page 43.) · Zbl 1155.83332 · doi:10.1142/S0218271801001591
[51] Bardeen, J.M., Carter, B. and Hawking, S.W., ”The four laws of black hole mechanics”, Commun. Math. Phys., 31, 161–170, (1973). [DOI]. (Cited on page 18.) · Zbl 1125.83309 · doi:10.1007/BF01645742
[52] Barrabès, C., Frolov, V.P. and Parentani, R., ”Metric fluctuation corrections to Hawking radiation”, Phys. Rev. D, 59, 124010, 1–14, (1999). [DOI], [gr-qc/9812076]. (Cited on page 89.) · Zbl 0973.83540 · doi:10.1103/PhysRevD.59.124010
[53] Barrabès, C., Frolov, V.P. and Parentani, R., ”Stochastically fluctuating black-hole geometry, Hawking radiation and the trans-Planckian problem”, Phys. Rev. D, 62, 044020, 1–19, (2000). [DOI], [gr-qc/0001102]. (Cited on page 89.) · doi:10.1103/PhysRevD.62.044020
[54] Basak, S., ”Sound wave in vortex with sink”, arXiv e-print, (2003). [gr-qc/0310105]. (Cited on page 44.)
[55] Basak, S., ”Analog of Superradiance effect in BEC”, arXiv e-print, (2005). [gr-qc/0501097]. (Cited on pages 44 and 95.)
[56] Basak, S. and Majumdar, P., ”Reflection coefficient for superresonant scattering”, Class. Quantum Grav., 20, 2929–2936, (2003). [DOI], [gr-qc/0303012]. (Cited on pages 44 and 95.) · Zbl 1038.83018 · doi:10.1088/0264-9381/20/13/335
[57] Basak, S. and Majumdar, P., ”’Superresonance’ from a rotating acoustic black hole”, Class. Quantum Grav., 20, 3907–3913, (2003). [DOI], [gr-qc/0203059]. (Cited on pages 43 and 95.) · Zbl 1048.83013 · doi:10.1088/0264-9381/20/18/304
[58] Bassett, B.A., Liberati, S., Molina-París, C. and Visser, M., ”Geometrodynamics of variable-speed-of-light cosmologies”, Phys. Rev. D, 62, 103518, 1–18, (2000). [DOI], [astro-ph/0001441]. (Cited on pages 43 and 96.)
[59] Bastero-Gil, M., ”What can we learn by probing trans-Planckian physics”, in Khalil, S., Shafi, Q. and Tallat, H., eds., International Conference on High Energy Physics, January 9–14, 2001, Cairo, Egypt, pp. 283–288, (Rinton Press, Princeton, NJ, 2001). [hep-ph/0106133]. (Cited on page 48.)
[60] Becar, R., Gonzalez, P., Pulgar, G. and Saavedra, J., ”Hawking radiation via Anomaly and Tunneling method from Unruh’s and Canonical acoustic black hole”, arXiv e-print, (2008). [arXiv:0808.1735 [gr-qc]]. (Cited on page 46.)
[61] Bekaert, X., Boulanger, N. and Sundell, P., ”How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples”, arXiv e-print, (2010). [arXiv:1007.0435 [hep-th]]. (Cited on page 106.)
[62] Belgiorno, F., ”Black Hole Thermodynamics in Carathéodory’s Approach”, Phys. Lett. A, 312, 324–330, (2003). [DOI], [gr-qc/0210020]. (Cited on page 89.) · Zbl 1027.83511 · doi:10.1016/S0375-9601(03)00685-6
[63] Belgiorno, F., Cacciatori, S.L., Ortenzi, G., Rizzi, L., Gorini, V. and Faccio, D., ”Dielectric black holes induced by a refractive index perturbation and the Hawking effect”, Phys. Rev. D, 83, 024015, (2011). [DOI], [arXiv:1003.4150 [quant-ph]]. (Cited on pages 47, 75, and 101.) · doi:10.1103/PhysRevD.83.024015
[64] Belgiorno, F., Cacciatori, S.L., Ortenzi, G., Sala, V.G. and Faccio, D., ”Quantum radiation from superluminal refractive index perturbations”, Phys. Rev. Lett., 104, 140403, (2010). [DOI], [arXiv:0910.3508 [quant-ph]]. (Cited on pages 75 and 101.) · doi:10.1103/PhysRevLett.104.140403
[65] Belgiorno, F., Liberati, S., Visser, M. and Sciama, D.W., ”Sonoluminescence: two-photon correlations as a test of thermality”, Phys. Lett. A, 271, 308–313, (2000). [DOI], [arXiv:quant-ph/9904018]. (Cited on page 87.) · doi:10.1016/S0375-9601(00)00394-7
[66] Belgiorno, F. et al., ”Hawking Radiation from Ultrashort Laser Pulse Filaments”, Phys. Rev. Lett., 105, 203901, (2010). [DOI], [arXiv:1009.4634 [gr-qc]]. (Cited on pages 47, 75, 87, 99, 101, and 111.) · doi:10.1103/PhysRevLett.105.203901
[67] Berry, M.V., ”Tsunami asymptotics”, New J. Phys., 7, 129, (2005). [DOI]. URL (accessed 20 March 2011): http://stacks.iop.org/1367-2630/7/i=1/a=129. (Cited on page 98.) · doi:10.1088/1367-2630/7/1/129
[68] Berry, M.V., ”Focused tsunami waves”, Proc. R. Soc. London, Ser. A, 463, 3055–3071, (2007). [DOI]. (Cited on page 98.) · Zbl 1158.86001 · doi:10.1098/rspa.2007.0051
[69] Berti, E., Cardoso, V. and Lemos, J.P.S., ”Quasinormal modes and classical wave propagation in analogue black holes”, Phys. Rev. D, 70, 124006, (2004). [DOI], [gr-qc/0408099]. (Cited on pages 44, 90, and 95.) · doi:10.1103/PhysRevD.70.124006
[70] Berti, E., Cardoso, V. and Starinets, A.O., ”Quasinormal modes of black holes and black branes”, Class. Quantum Grav., 26, 163001, (2009). [DOI], [arXiv:0905.2975 [gr-qc]]. (Cited on page 46.) · Zbl 1173.83001 · doi:10.1088/0264-9381/26/16/163001
[71] Bhattacharyya, G., Mathews, P., Rao, K. and Sridhar, K., ”Searching for signals of minimal length in extra dimensional models using dilepton production at hadron colliders”, Phys. Lett. B, 603, 46–50, (2004). [DOI], [hep-ph/0408295]. (Cited on page 48.) · doi:10.1016/j.physletb.2004.10.012
[72] Bilic, N., ”Relativistic Acoustic Geometry”, Class. Quantum Grav., 16, 3953–3964, (1999). [DOI], [gr-qc/9908002]. (Cited on pages 42, 50, and 51.) · Zbl 1081.83530 · doi:10.1088/0264-9381/16/12/312
[73] Bini, D., Cherubini, C. and Filippi, S., ”Effective geometries in self-gravitating polytropes”, Phys. Rev. D, 78, 064024, (2008). [DOI]. (Cited on page 46.) · doi:10.1103/PhysRevD.78.064024
[74] Bini, D., Cherubini, C., Filippi, S. and Geralico, A., ”Effective geometry of the n = 1 uniformly rotating self-gravitating polytrope”, Phys. Rev. D, 82, 044005, (2010). [DOI]. (Cited on page 47.) · doi:10.1103/PhysRevD.82.044005
[75] Birrell, N.D. and Davis, P.C.W., Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1982). [Google Books]. (Cited on page 102.) · Zbl 0476.53017
[76] Blaauwgeers, R., Eltsov, V.B., Eska, G., Finne, A.P., Haley, R.P., Krusius, M., Skrbek, L. and Volovik, G.E., ”AB interface in rotating superfluid 3He: the first example of a superfluid shear-flow instability”, Physica B, 329–333, 57–61, (2003). [DOI]. (Cited on page 100.) · doi:10.1016/S0921-4526(02)01920-8
[77] Blaauwgeers, R. et al., ”Shear Flow and Kelvin-Helmholtz Instability in Superfluids”, Phys. Rev. Lett., 89, 155301, (2002). [DOI], [arXiv:cond-mat/0111343]. (Cited on page 100.) · doi:10.1103/PhysRevLett.89.155301
[78] Błaut, A., Kowalski-Glikman, J. and Nowak-Szczepaniak, D., ”{\(\kappa\)}-Poincaré dispersion relations and the black hole radiation”, Phys. Lett. B, 521, 364–370, (2001). [gr-qc/0108069]. (Cited on page 48.) · Zbl 1020.83020 · doi:10.1016/S0370-2693(01)01235-7
[79] Bogoliubov, N., ”On the theory of superfluidity”, J. Phys. (Moscow), 11, 23, (1947). (Cited on page 67.)
[80] Bombelli, L. and Sonego, S., ”Relationships between various characterizations of wave tails”, J. Phys. A: Math. Gen., 27, 7177–7199, (1994). [DOI]. (Cited on page 49.) · Zbl 0845.35126 · doi:10.1088/0305-4470/27/21/033
[81] Boonserm, P., Cattoen, C., Faber, T., Visser, M. and Weinfurtner, S., ”Effective refractive index tensor for weak field gravity”, Class. Quantum Grav., 22, 1905–1915, (2005). [DOI], [gr-qc/0411034]. (Cited on page 44.) · Zbl 1079.83010 · doi:10.1088/0264-9381/22/11/001
[82] Born, M. and Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Pergamon, Oxford; New York, 1980), 6th edition. (Cited on pages 58 and 60.) · Zbl 0086.41704
[83] Bousso, R. and Polchinski, J., ”The string theory landscape”, Sci. Am., 291, 60–69, (2004). [DOI]. (Cited on page 110.) · doi:10.1038/scientificamerican0904-78
[84] Brandenberger, R.H., ”Frontiers of inflationary cosmology”, Braz. J. Phys., 31, 131–146, (2001). [DOI], [hep-ph/0102183]. (Cited on page 96.) · doi:10.1590/S0103-97332001000200003
[85] Brandenberger, R.H., ”A Status Review of Inflationary Cosmology”, arXiv e-print, (2001). [hep-ph/0101119]. (Cited on page 96.)
[86] Brandenberger, R.H., ”Trans-Planckian Physics and Inflationary Cosmology”, in He, X.-G. and Ng, K.-W., eds., Cosmology and Particle Astrophysics (CosPA 2002), Proceedings of the 2002 International Symposium, Taipei, Taiwan, 31 May–2 June 2002, pp. 100–113, (World Scientific, Singapore, River Edge, NJ, 2003). [DOI], [hep-th/0210186], [Google Books]. Online version (accessed 22 March 2011): http://eproceedings.worldscinet.com/9789812704900/9789812704900_0008.html. (Cited on page 96.) · Zbl 1040.83522
[87] Brandenberger, R.H., ”Lectures on the theory of cosmological perturbations”, in Bretón, N., Cervantes-Cota, J. and Salgado, M., eds., The Early Universe and Observational Cosmology, Proceedings of the 5th Mexican School on Gravitation and Mathematical Physics (DGFM 2002), Playa del Carmen, Quintana Roo, Mexico, 24–29 November 2002, Lecture Notes in Physics, 646, pp. 127–167, (Springer, Berlin; New York, 2004). [hep-th/0306071]. (Cited on page 96.)
[88] Brandenberger, R.H., Joras, S.E. and Martin, J., ”Trans-Planckian physics and the spectrum of fluctuations in a bouncing universe”, Phys. Rev. D, 66, 083514, 1–9, (2002). [DOI], [hep-th/0112122]. (Cited on page 96.)
[89] Brandenberger, R.H. and Martin, J., ”The robustness of inflation to changes in super-Planck-scale physics”, Mod. Phys. Lett. A, 16, 999–1006, (2001). [DOI], [astro-ph/0005432]. (Cited on page 96.) · Zbl 1138.83379 · doi:10.1142/S0217732301004170
[90] Brandenberger, R.H. and Martin, J., ”On signatures of short distance physics in the cosmic microwave background”, Int. J. Mod. Phys. A, 17, 3663–3680, (2002). [DOI], [hep-th/0202142]. (Cited on page 96.) · Zbl 1012.83026 · doi:10.1142/S0217751X02010765
[91] Brevik, I. and Halnes, G., ”Light rays at optical black holes in moving media”, Phys. Rev. D, 65, 024005, 1–12, (2002). [gr-qc/0106045]. (Cited on page 43.)
[92] Brillouin, L., Wave propagation and group velocity, (Academic, Woodbury, NY, 1960). (Cited on page 54.) · Zbl 0094.41601
[93] Brout, R., Gabriel, C., Lubo, M. and Spindel, P., ”Minimal length uncertainty principle and the trans-Planckian problem of black hole physics”, Phys. Rev. D, 59, 044005, 1–6, (1999). [DOI], [hep-th/9807063]. (Cited on page 48.) · doi:10.1103/PhysRevD.59.044005
[94] Brout, R., Massar, S., Parentani, R. and Spindel, P., ”Hawking radiation without trans-Planckian frequencies”, Phys. Rev. D, 52, 4559–4568, (1995). [DOI], [hep-th/9506121]. (Cited on pages 82, 83, and 87.) · doi:10.1103/PhysRevD.52.4559
[95] Brout, R., Massar, S., Parentani, R. and Spindel, P., ”A Primer for black hole quantum physics”, Phys. Rep., 260, 329–454, (1995). [DOI], [arXiv:0710.4345 [gr-qc]]. (Cited on pages 78, 87, and 102.) · doi:10.1016/0370-1573(95)00008-5
[96] Budker, D., Kimball, D.F., Rochester, S.M. and Yashchuk, V.V., ”Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation”, Phys. Rev. Lett., 83, 1767–1770, (1999). [DOI]. (Cited on page 72.) · doi:10.1103/PhysRevLett.83.1767
[97] Bunkov, Y.M., ”Spin superfluidity and magnons Bose-Einstein condensation”, Phys. Usp., 53, 848–853, (2010). [DOI], [arXiv:1003.4889 [cond-mat.other]]. (Cited on page 48.) · doi:10.3367/UFNe.0180.201008m.0884
[98] Burgess, C.P., ”Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory”, Living Rev. Relativity, 7, lrr-2004-5, (2004). URL (accessed 31 May 2005): http://www.livingreviews.org/lrr-2004-5. (Cited on page 44.)
[99] Burgess, C.P., Cline, J.M., Filotas, E., Matias, J. and Moore, G.D., ”Loop-generated bounds on changes to the graviton dispersion relation”, J. High Energy Phys., 2002(03), 043, (2002). [DOI], [hep-ph/0201082]. (Cited on page 110.) · doi:10.1088/1126-6708/2002/03/043
[100] Cacciatori, S.L., Belgiorno, F., Gorini, V., Ortenzi, G., Rizzi, L., Sala, V.G. and Faccio, D., ”Spacetime geometries and light trapping in travelling refractive index perturbations”, New J. Phys., 12, 095021, (2010). [DOI], [arXiv:1006.1097 [physics.optics]]. URL (accessed 25 March 2011): http://stacks.iop.org/1367-2630/12/i=9/a=095021. (Cited on page 47.) · doi:10.1088/1367-2630/12/9/095021
[101] Cadoni, M., ”Acoustic analogues of two-dimensional black holes”, Class. Quantum Grav., 22, 409–419, (2004). [gr-qc/0410138]. (Cited on page 44.) · Zbl 1067.83530 · doi:10.1088/0264-9381/22/2/012
[102] Cadoni, M. and Mignemi, S., ”Acoustic analogues of black hole singularities”, Phys. Rev. D, 72, 084012, (2005). [DOI], [gr-qc/0504143]. (Cited on page 44.) · doi:10.1103/PhysRevD.72.084012
[103] Cadoni, M. and Pani, P., ”Acoustic horizons for axially and spherically symmetric fluid flow”, Class. Quantum Grav., 23, 2427–2434, (2006). [DOI], [arXiv:physics/0510164]. (Cited on page 44.) · Zbl 1090.83016 · doi:10.1088/0264-9381/23/7/013
[104] Calogeracos, A. and Volovik, G.E., ”Rotational quantum friction in superfluids: Radiation from object rotating in superfluid vacuum”, J. Exp. Theor. Phys. Lett., 69, 281–287, (1999). [DOI], [cond-mat/9901163]. (Cited on page 43.) · doi:10.1134/1.568024
[105] Calzetta, E.A. and Hu, B.L., ”BEC Collapse, Particle Production and Squeezing of the Vacuum”, arXiv e-print, (2002). [cond-mat/0208569]. (Cited on pages 30 and 97.)
[106] Calzetta, E.A. and Hu, B.L., ”Bose-Einstein condensate collapse and dynamical squeezing of vacuum fluctuations”, Phys. Rev. A, 68, 043625, (2003). [DOI], [cond-mat/0207289]. (Cited on pages 30 and 97.) · doi:10.1103/PhysRevA.68.043625
[107] Calzetta, E.A., Hu, B.L. and Mazzitelli, F.D., ”Coarse-grained effective action and renor-malization group theory in semiclassical gravity and cosmology”, Phys. Rep., 352, 459–520, (2001). [DOI], [hep-th/0102199]. (Cited on page 48.) · Zbl 0979.82045 · doi:10.1016/S0370-1573(01)00043-6
[108] Canfora, F. and Vilasi, G., ”Back Reaction from Trace Anomaly in RN-blackholes Evaporation”, J. High Energy Phys., 2003(12), 055, (2003). [DOI], [gr-qc/0402017]. (Cited on page 89.) · doi:10.1088/1126-6708/2003/12/055
[109] Canfora, F. and Vilasi, G., ”Trace anomaly and black holes evaporation”, arXiv e-print, (2003). [gr-qc/0302036]. (Cited on page 89.)
[110] Caravelli, F. and Markopoulou, F., ”Properties of Quantum Graphity at Low Temperature”, arXiv e-print, (2010). [arXiv:1008.1340 [gr-qc]]. (Cited on page 47.)
[111] Cardoso, V., ”Acoustic Black Holes”, in Mourão, A.M., Pimenta, M., Potting, R. and Sá, P.M., eds., New Worlds in Astroparticle Physics, Proceedings of the Fifth International Workshop, Faro, Portugal, 8–10 January 2005, pp. 245–251, (World Scientific, River Edge, NJ; Singapore, 2006). [DOI], [physics/0503042]. Online version (accessed 22 March 2011): http://eproceedings.worldscinet.com/9789812774439/9789812774439_0026.html. (Cited on page 44.)
[112] Cardoso, V., Lemos, J.P.S. and Yoshida, S., ”Quasinormal modes and stability of the rotating acoustic black hole: Numerical analysis”, Phys. Rev. D, 70, 124032, 1–7, (2004). [DOI], [gr-qc/0410107]. (Cited on pages 44 and 95.)
[113] Carlip, S., ”Quantum gravity: A progress report”, Rep. Prog. Phys., 64, 885–942, (2001). [DOI], [gr-qc/0108040]. (Cited on page 110.) · doi:10.1088/0034-4885/64/8/301
[114] Carlip, S., ”Horizons, constraints, and black hole entropy”, Int. J. Theor. Phys., 46, 2192–2203, (2007). [DOI], [arXiv:gr-qc/0601041]. (Cited on page 48.) · Zbl 1170.83403 · doi:10.1007/s10773-007-9340-3
[115] Carlip, S., ”Black Hole Thermodynamics and Statistical Mechanics”, in Papantonopoulos, E., ed., Physics of Black Holes: A Guided Tour, Fourth Aegean School on Black Holes, held in Mytilene, Greece, 17–22 September 2007, Lecture Notes in Physics, 769, pp. 89–123, (Springer, Berlin; New York, 2009). [DOI], [arXiv:0807.4520 [gr-qc]]. (Cited on page 48.)
[116] Carter, B., ”Relativistic superfluid models for rotating neutron stars”, in Blaschke, D., Glendenning, N.K. and Sedrakian, A., eds., Physics of Neutron Star Interiors, Lecture Notes in Physics, 578, p. 54, (Springer, Berlin; New York, 2001). [astro-ph/0101257], [Google Books]. (Cited on page 43.)
[117] Carter, B. and Chamel, N., ”Covariant Analysis of Newtonian Multi-Fluid Models for Neutron Stars I: Milne-Cartan Structure and Variational Formulation”, Int. J. Mod. Phys. D, 13, 291–325, (2004). [DOI], [astro-ph/0305186]. (Cited on page 44.) · Zbl 1083.83007 · doi:10.1142/S0218271804004542
[118] Carusotto, I., Balbinot, R., Fabbri, A. and Recati, A., ”Density correlations and dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates”, Eur. Phys. J. D, 56, 391–404, (2010). [DOI], [arXiv:0907.2314 [cond-mat.quant-gas]]. (Cited on pages 47, 85, 87, and 88.) · doi:10.1140/epjd/e2009-00314-3
[119] Carusotto, I., Fagnocchi, S., Recati, A., Balbinot, R. and Fabbri, A., ”Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates”, New J. Phys., 10, 103001, (2008). [DOI], [arXiv:0803.0507 [cond-mat.other]]. URL (accessed 20 March 2011): http://stacks.iop.org/1367-2630/10/i=10/a=103001. (Cited on pages 46, 85, and 87.) · Zbl 1328.83078 · doi:10.1088/1367-2630/10/10/103001
[120] Casadio, R., ”On dispersion relations and the statistical mechanics of Hawking radiation”, Class. Quantum Grav., 19, 2453–2462, (2002). [DOI], [hep-th/0111287]. (Cited on page 89.) · Zbl 1003.83024 · doi:10.1088/0264-9381/19/9/309
[121] Casadio, R., ”On brane-world black holes and short scale physics”, Ann. Phys. (N.Y.), 307, 195–208, (2003). [DOI], [hep-ph/0304099]. (Cited on page 48.) · Zbl 1044.81104 · doi:10.1016/S0003-4916(03)00117-9
[122] Casadio, R. and Mersini, L., ”Short distance signatures in cosmology: Why not in black holes?”, Int. J. Mod. Phys. A, 19, 1395–1412, (2004). [DOI], [hep-th/0208050]. (Cited on page 96.) · Zbl 1080.83535 · doi:10.1142/S0217751X04016453
[123] Casalderrey-Solana, J., Shuryak, E.V. and Teaney, D., ”Hydrodynamic flow from fast particles”, arXiv e-print, (2006). [arXiv:hep-ph/0602183]. (Cited on page 45.)
[124] Casher, A., Englert, F., Itzhaki, N., Massar, S. and Parentani, R., ”Black hole horizon fluctuations”, Nucl. Phys. B, 484, 419–434, (1997). [DOI], [hep-th/9606106]. (Cited on page 89.) · Zbl 0925.83047 · doi:10.1016/S0550-3213(96)00613-X
[125] Cassidy, M.J. and Hawking, S.W., ”Models for chronology selection”, Phys. Rev. D, 57, 2372–2380, (1998). [DOI], [hep-th/9709066]. (Cited on page 17.) · doi:10.1103/PhysRevD.57.2372
[126] Castin, Y. and Dum, R., ”Bose-Einstein Condensates in Time Dependent Traps”, Phys. Rev. Lett., 77, 5315–5319, (1996). [DOI]. (Cited on page 30.) · doi:10.1103/PhysRevLett.77.5315
[127] Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K., ”The electronic properties of graphene”, Rev. Mod. Phys., 81, 109–162, (2009). [DOI]. (Cited on page 76.) · doi:10.1103/RevModPhys.81.109
[128] Chang, D., Chu, C.-S. and Lin, F.-L., ”Transplanckian dispersion relation and entanglement entropy of black hole”, Fortschr. Phys., 52, 477–482, (2004). [DOI], [hep-th/0312136]. (Cited on page 48.) · Zbl 1055.83506 · doi:10.1002/prop.200310133
[129] Chang, D., Chu, C.-S. and Lin, F.-L., ”Transplanckian entanglement entropy”, Phys. Lett. B, 583, 192–198, (2004). [DOI], [hep-th/0306055]. (Cited on page 48.) · Zbl 1246.83105 · doi:10.1016/j.physletb.2003.12.060
[130] Chang-Young, E., Eune, M., Kimm, K. and Lee, D., ”Surface gravity and Hawking temperature from entropic force viewpoint”, Mod. Phys. Lett. A, 25, 2825–2830, (2010). [DOI], [arXiv:1003.2049 [gr-qc]]. (Cited on page 47.) · Zbl 1202.83066 · doi:10.1142/S0217732310033979
[131] Chapline, G., Hohlfeld, E., Laughlin, R.B. and Santiago, D.I., ”Quantum phase transitions and the breakdown of classical general relativity”, Int. J. Mod. Phys. A, 18, 3587–3590, (2003). [DOI], [gr-qc/0012094]. (Cited on page 43.) · doi:10.1142/S0217751X03016380
[132] Chapline, G. and Mazur, P.O., ”Superfluid picture for rotating space-times”, arXiv e-print, (2004). [gr-qc/0407033]. (Cited on page 44.)
[133] Chen, H. and Chan, C.T., ”Acoustic cloaking in three dimensions using acoustic metamaterials”, Appl. Phys. Lett., 91, 183518, (2007). [DOI]. (Cited on page 97.) · doi:10.1063/1.2803315
[134] Chen, S.-B. and Jing, J.-L., ”Quasinormal modes of a coupled scalar field in the acoustic black hole spacetime”, Chinese Phys. Lett., 23, 21–24, (2006). [DOI]. (Cited on page 45.) · doi:10.1088/0256-307X/23/8/068
[135] Cherubini, C., Federici, F., Succi, S. and Tosi, M.P., ”Excised acoustic black holes: The scattering problem in the time domain”, Phys. Rev. D, 72, 084016, 1–9, (2005). [DOI], [gr-qc/0504048]. (Cited on page 44.) · doi:10.1103/PhysRevD.72.084016
[136] Choy, K., Kruk, T., Carrington, M.E., Fugleberg, T., Zahn, J., Kobes, R., Kunstatter, G. and Pickering, D., ”Energy flow in acoustic black holes”, Phys. Rev. D, 73, 104011, (2006). [DOI], [arXiv:gr-qc/0505163]. (Cited on page 44.) · doi:10.1103/PhysRevD.73.104011
[137] Christensen, S.M. and Fulling, S.A., ”Trace anomalies and the Hawking effect”, Phys. Rev. D, 15, 2088–2104, (1977). [DOI]. (Cited on page 102.) · doi:10.1103/PhysRevD.15.2088
[138] Chruściel, P.T., ”Black holes”, in Frauendiener, J. and Friedrich, H., eds., The Conformal Structure of Space-Time: Geometry, Analysis, Numerics, Proceedings of the interna-tionl workshop, Tübingen, Germany, April 2001, Lecture Notes in Physics, 604, pp. 61–102, (Springer, Berlin; New York, 2002). [gr-qc/0201053]. (Cited on page 12.)
[139] Chruściel, P.T., Galloway, G.J. and Pollack, D., ”Mathematical general relativity: a sampler”, arXiv e-print, (2010). [arXiv:1004.1016 [gr-qc]]. (Cited on page 47.) · Zbl 1205.83002
[140] Chu, C.-S., Greene, B.R. and Shiu, G., ”Remarks on inflation and noncommutative geometry”, Mod. Phys. Lett. A, 16, 2231–2240, (2001). [hep-th/0011241]. (Cited on page 48.) · Zbl 1138.83382 · doi:10.1142/S0217732301005680
[141] Coleman, S.R. and Glashow, S.L., ”High-energy tests of Lorentz invariance”, Phys. Rev. D, 59, 116008, 1–14, (1999). [DOI], [hep-ph/9812418]. (Cited on page 110.) · doi:10.1103/PhysRevD.59.116008
[142] Collins, H. and Martin, M.R., ”The enhancement of inflaton loops in an {\(\alpha\)}-vacuum”, Phys. Rev. D, 70, 084021, 1–9, (2004). [DOI], [hep-ph/0309265]. (Cited on page 48.)
[143] Comer, G.L., ”Superfluid analog of the Davies-Unruh effect”, arXiv e-print, (1992). [gr-qc/0505005]. (Cited on pages 36 and 42.)
[144] Consoli, M., ”Approximate Lorentz invariance of the vacuum: A physical solution of the ’hierarchy problem’?”, arXiv e-print, (2003). [hep-ph/0306070]. (Cited on page 48.)
[145] Corley, S., ”Particle creation via high frequency dispersion”, Phys. Rev. D, 55, 6155–6161, (1997). [DOI]. (Cited on page 27.) · doi:10.1103/PhysRevD.55.6155
[146] Corley, S.R., The role of short distance physics in the Hawking effect, Ph.D. Thesis, (University of Maryland, College Park, MD, 1997). (Cited on page 42.)
[147] Corley, S., ”Computing the spectrum of black hole radiation in the presence of high frequency dispersion: An analytical approach”, Phys. Rev. D, 57, 6280–6291, (1998). [DOI], [hep-th/9710075]. (Cited on pages 83 and 84.) · doi:10.1103/PhysRevD.57.6280
[148] Corley, S. and Jacobson, T.A., ”Hawking Spectrum and High Frequency Dispersion”, Phys. Rev. D, 54, 1568–1586, (1996). [DOI], [hep-th/9601073]. (Cited on pages 27, 42, 82, and 83.) · doi:10.1103/PhysRevD.54.1568
[149] Corley, S. and Jacobson, T.A., ”Lattice black holes”, Phys. Rev. D, 57, 6269–6279, (1998). [DOI], [hep-th/9709166]. (Cited on pages 75, 88, and 89.) · doi:10.1103/PhysRevD.57.6269
[150] Corley, S. and Jacobson, T.A., ”Black hole lasers”, Phys. Rev. D, 59, 124011, 1–12, (1999). [DOI], [hep-th/9806203]. (Cited on pages 27, 42, 85, and 94.)
[151] Cornish, S.L., Claussen, N.R., Roberts, J.L., Cornell, E.A. and Wieman, C.E., ”Stable 85Rb Bose-Einstein Condensates with Widely Tunable Interactions”, Phys. Rev. Lett., 85, 1795–1798, (2000). [DOI]. (Cited on page 69.) · doi:10.1103/PhysRevLett.85.1795
[152] Cortijo, A. and Vozmediano, M.A.H., ”Effects of topological defects and local curvature on the electronic properties of planar graphene”, Nucl. Phys. B, 763, 293–308, (2007). [DOI], [arXiv:cond-mat/0612374]. (Cited on page 76.) · Zbl 1116.82335 · doi:10.1016/j.nuclphysb.2006.10.031
[153] Cortijo, A. and Vozmediano, M.A.H., ”Electronic properties of curved graphene sheets”, Europhys. Lett., 77, 47002, (2007). [DOI], [arXiv:cond-mat/0603717]. (Cited on page 76.) · doi:10.1209/0295-5075/77/47002
[154] Courant, R. and Hilbert, D., Methods of Mathematical Physics, Wiley Classics Library, 2, (Interscience, New York, 1989). (Cited on page 62.) · Zbl 0729.35001
[155] Coutant, A. and Parentani, R., ”Black hole lasers, a mode analysis”, Phys. Rev. D, 81, 084042, (2010). [DOI], [arXiv:0912.2755 [hep-th]]. (Cited on pages 85, 92, and 94.) · doi:10.1103/PhysRevD.81.084042
[156] Crispino, L.C.B., Oliveira, E.S. and Matsas, G.E.A., ”Absorption cross section of canonical acoustic holes”, Phys. Rev. D, 76, 107502, (2007). [DOI]. (Cited on page 45.) · doi:10.1103/PhysRevD.76.107502
[157] Czerniawski, J., ”What is wrong with Schwarzschild’s coordinates?”, arXiv e-print, (2002). [gr-qc/0201037]. (Cited on page 48.)
[158] Damour, T., ”The entropy of black holes: A primer”, in Dalibard, J., Duplantier, B. and Rivasseau, V., eds., Poincaré Seminar 2003: Bose-Einstein Condensation – Entropy, Proceedings of the third and fourth Poincaré Seminars, Progress in Mathematical Physics, 38, (Birkhäuser, Basel; Boston, 2004). [hep-th/0401160]. (Cited on page 89.)
[159] Das, S., ”Black hole thermodynamics: Entropy, information and beyond”, Pramana, 63, 797–816, (2004). [DOI], [hep-th/0403202]. (Cited on page 44.) · doi:10.1007/BF02705201
[160] Das, T.K., ”Analogous Hawking Radiation from Astrophysical Black Hole Accretion”, arXiv e-print, (2004). [astro-ph/0404482]. (Cited on pages 44 and 50.)
[161] Das, T.K., ”Analogue Hawking radiation from astrophysical black hole accretion”, Class. Quantum Grav., 21, 5253–5260, (2004). [DOI], [gr-qc/0408081]. (Cited on pages 44 and 50.) · Zbl 1062.83052 · doi:10.1088/0264-9381/21/22/016
[162] Das, T.K., ”Transonic Black Hole Accretion as Analogue System”, arXiv e-print, (2004). [gr-qc/0411006]. (Cited on pages 44 and 50.)
[163] Das, T.K., ”Astrophysical Accretion as an Analogue Gravity Phenomena”, arXiv e-print, (2007). [arXiv:0704.3618 [astro-ph]]. (Cited on page 46.)
[164] Das, T.K., Bilic, N. and Dasgupta, S., ”Black-Hole Accretion Disc as an Analogue Gravity Model”, J. Cosmol. Astropart. Phys., 2007(06), 009, (2007). [DOI], [arXiv:astro-ph/0604477]. (Cited on page 45.) · doi:10.1088/1475-7516/2007/06/009
[165] Dasgupta, S., Bilic, N. and Das, T.K., ”Pseudo-Schwarzschild Spherical Accretion as a Classical Black Hole Analogue”, Gen. Relativ. Gravit., 37, 1877–1890, (2005). [DOI], [arXiv:astro-ph/0501410]. (Cited on page 44.) · Zbl 1082.83020 · doi:10.1007/s10714-005-0194-9
[166] Davies, P.C.W., Fulling, S.A. and Unruh, W.G., ”Energy momentum tensor near an evaporating black hole”, Phys. Rev. D, 13, 2720–2723, (1976). [DOI]. (Cited on page 102.) · doi:10.1103/PhysRevD.13.2720
[167] de A. Marques, G., ”Analogue of superradiance effect in acoustic black hole in the presence of disclination”, arXiv e-print, (2007). [arXiv:0705.3916 [gr-qc]]. (Cited on page 45.)
[168] de Felice, F., ”On the gravitational field acting as an optical medium”, Gen. Relativ. Gravit., 2, 347–357, (1971). (Cited on page 40.) · doi:10.1007/BF00758153
[169] De Lorenci, V.A. and Klippert, R., ”Analogue gravity from electrodynamics in nonlinear media”, Phys. Rev. D, 65, 064027, 1–6, (2002). [DOI], [gr-qc/0107008]. (Cited on page 43.)
[170] De Lorenci, V.A., Klippert, R., Novello, M. and Salim, J.M., ”Nonlinear electrodynamics and FRW cosmology”, Phys. Rev. D, 65, 063501, 1–5, (2002). [DOI]. (Cited on pages 43 and 58.)
[171] De Lorenci, V.A., Klippert, R. and Obukhov, Y.N., ”On optical black holes in moving dielectrics”, Phys. Rev. D, 68, 061502, 1–4, (2003). [DOI], [gr-qc/0210104]. (Cited on page 43.) · Zbl 1167.83320
[172] de M Carvalho, A.M., Moraes, F. and Furtado, C., ”The self-energy of a charged particle in the presence of a topological defect distribution”, Int. J. Mod. Phys. A, 19, 2113–2122, (2004). [DOI], [gr-qc/0401030]. (Cited on page 48.) · doi:10.1142/S0217751X04018373
[173] Dolan, S.R., Oliveira, E.S. and Crispino, L.C.B., ”Scattering of Sound Waves by a Canonical Acoustic Hole”, Phys. Rev. D, 79, 064014, (2009). [DOI], [arXiv:0904.0010 [gr-qc]]. (Cited on page 46.) · doi:10.1103/PhysRevD.79.064014
[174] Dolan, S.R. and Ottewill, A.C., ”On an Expansion Method for Black Hole Quasinormal Modes and Regge Poles”, Class. Quantum Grav., 26, 225003, (2009). [DOI], [arXiv:0908.0329 [gr-qc]]. (Cited on page 46.) · Zbl 1181.83106 · doi:10.1088/0264-9381/26/22/225003
[175] Donley, E.A., Claussen, N.R., Cornish, S.L., Roberts, J.L., Cornell, E.A. and Wieman, C.E., ”Dynamics of collapsing and exploding Bose-Einstein condensates”, Nature, 412, 295–299, (2001). [DOI], [cond-mat/0105019]. (Cited on pages 69 and 96.) · doi:10.1038/35085500
[176] Doran, C., ”A new form of the Kerr solution”, Phys. Rev. D, 61, 067503, (2000). [DOI], [arXiv:gr-qc/9910099]. (Cited on page 29.) · doi:10.1103/PhysRevD.61.067503
[177] Dumin, Y.V., ”Topological Defect Density in One-Dimensional Friedmann-Robertson-Walker Cosmological Model: Corrections Inferred from the Multi-Josephson-Junction-Loop Experiment”, arXiv e-print, (2003). [hep-ph/0308184]. (Cited on page 44.)
[178] Dziarmaga, J., ”Analog electromagnetism in a symmetrized 3He-A”, arXiv e-print, (2001). [gr-qc/0112041]. (Cited on page 43.)
[179] Easther, R., Greene, B.R., Kinney, W.H. and Shiu, G., ”Inflation as a probe of short distance physics”, Phys. Rev. D, 64, 103502, 1–8, (2001). [DOI], [hep-th/0104102]. (Cited on pages 43 and 96.) · Zbl 1222.83194 · doi:10.1103/PhysRevD.64.103502
[180] Eling, C., Jacobson, T. and Mattingly, D., ”Einstein-Aether Theory”, in Liu, J.T., Duff, M.J., Stelle, K.S. and Woodard, R.P., eds., DESERFEST: A Celebration of the Life and Works of Stanley Deser, University of Michigan, Ann Arbor, USA, 3–5 April 2004, pp. 163–179, (World Scientific, River Edge, NJ; Singapore, 2004). [DOI], [arXiv:gr-qc/0410001 [gr-qc]]. URL (accessed 15 March 2011): http://eproceedings.worldscinet.com/9789812774804/9789812774804_0012.html. (Cited on page 104.)
[181] Ellis, G.F.R. and Uzan, J.-P., ”’c’ is the speed of light, isn’t it?”, Am. J. Phys., 73, 240–247, (2005). [DOI], [gr-qc/0305099]. (Cited on page 96.) · doi:10.1119/1.1819929
[182] Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V. and Volkov, G., ”Gravitational-recoil effects on fermion propagation in space-time foam”, Gen. Relativ. Gravit., 32, 1777–1798, (2000). [gr-qc/9911055]. (Cited on page 110.) · Zbl 0974.83045 · doi:10.1023/A:1001980530113
[183] Eltsov, V.B., Krusius, M. and Volovik, G.E., ”Superfluid 3He: A Laboratory model system of quantum field theory”, arXiv e-print, (1998). [cond-mat/9809125v1]. (Cited on page 42.)
[184] Englert, F., ”The Black hole history in tamed vacuum”, arXiv e-print, (1994). [gr-qc/9408005]. (Cited on page 89.)
[185] Englert, F., Massar, S. and Parentani, R., ”Source vacuum fluctuations of black hole radiance”, Class. Quantum Grav., 11, 2919–2938, (1994). [DOI], [gr-qc/9404026]. (Cited on page 89.) · doi:10.1088/0264-9381/11/12/008
[186] Fabbri, A. and Mayoral, C., ”Step-like discontinuities in Bose-Einstein condensates and Hawking radiation: the hydrodynamic limit”, arXiv e-print, (2010). [arXiv:1004.4876 [gr-qc]]. (Cited on page 47.)
[187] Faccio, D., Cacciatori, S., Gorini, V., Sala, V.G., Averchi, A., Lotti, A., Kolesik, M. and Moloney, J.V., ”Analogue Gravity and Ultrashort Laser Pulse Filamentation”, Europhys. Lett., 89, 34004, (2010). [DOI], [arXiv:0905.4426 [gr-qc]]. (Cited on page 46.) · doi:10.1209/0295-5075/89/34004
[188] Fagnocchi, S., ”Analog models beyond kinematics”, arXiv e-print, (2006). [arXiv:gr-qc/0611096]. (Cited on page 45.)
[189] Fagnocchi, S., ”Back-reaction effects in acoustic black holes”, J. Phys.: Conf. Ser., 33, 445–450, (2006). [DOI], [arXiv:gr-qc/0601084]. (Cited on page 45.) · doi:10.1088/1742-6596/33/1/057
[190] Fagnocchi, S., ”Correlations of Hawking radiation in acoustic black holes”, J. Phys.: Conf. Ser., 222, 012036, (2010). [DOI]. (Cited on pages 47 and 87.) · doi:10.1088/1742-6596/222/1/012036
[191] Fagnocchi, S., Finazzi, S., Liberati, S., Kormos, M. and Trombettoni, A., ”Relativistic Bose-Einstein condensates: a new system for analogue models of gravity”, New J. Phys., 12, 095012, (2010). [DOI], [arXiv:1001.1044 [gr-qc]]. URL (accessed 20 March 2011): http://stacks.iop.org/1367-2630/12/i=9/a=095012. (Cited on pages 47, 52, 68, 69, and 70.) · doi:10.1088/1367-2630/12/9/095012
[192] Farhat, M., Guenneau, S. and Enoch, S., ”Ultrabroadband Elastic Cloaking in Thin Plates”, Phys. Rev. Lett., 103, 024301, (2009). [DOI]. (Cited on page 97.) · doi:10.1103/PhysRevLett.103.024301
[193] Federici, F., Cherubini, C., Succi, S. and Tosi, M.P., ”Superradiance from BEC vortices: a numerical study”, Phys. Rev. A, 73, 033604, (2006). [DOI], [arXiv:gr-qc/0503089]. (Cited on pages 44 and 95.) · doi:10.1103/PhysRevA.73.033604
[194] Fedichev, P.O. and Fischer, U.R., ”Gibbons-Hawking Effect in the Sonic de Sitter SpaceTime of an Expanding Bose-Einstein-Condensed Gas”, Phys. Rev. Lett., 91, 240407, (2003). [DOI], [cond-mat/0304342]. (Cited on pages 30, 32, 44, 63, and 96.) · doi:10.1103/PhysRevLett.91.240407
[195] Fedichev, P.O. and Fischer, U.R., ”’Cosmological’ quasiparticle production in harmonically trapped superfluid gases”, Phys. Rev. A, 69, 033602, (2004). [cond-mat/0303063]. (Cited on pages 30, 44, 63, and 96.) · doi:10.1103/PhysRevA.69.033602
[196] Fedichev, P.O. and Fischer, U.R., ”Observer dependence for the phonon content of the sound field living on the effective curved space-time background of a Bose-Einstein condensate”, Phys. Rev. D, 69, 064021, (2004). [DOI], [cond-mat/0307200]. (Cited on pages 30, 32, 44, and 96.) · doi:10.1103/PhysRevD.69.064021
[197] Finazzi, S., Liberati, S. and Barceló, C., ”Semiclassical instability of dynamical warp drives”, Phys. Rev. D, 79, 124017, (2009). [DOI], [arXiv:arXiv:0904.0141 [gr-qc]]. (Cited on page 27.) · doi:10.1103/PhysRevD.79.124017
[198] Finazzi, S., Liberati, S. and Sindoni, L., ”The cosmological constant: a lesson from Bose-Einstein condensates”, arXiv e-print, (2011). [arXiv:1103.4841 [gr-qc]]. (Cited on page 108.)
[199] Finazzi, S. and Parentani, R., ”Black hole lasers in Bose-Einstein condensates”, New J. Phys., 12, 095015, (2010). [DOI], [arXiv:1005.4024 [cond-mat.quant-gas]]. URL (accessed 25 March 2011): http://stacks.iop.org/1367-2630/12/i=9/a=095015. (Cited on pages 47, 83, 85, 92, and 94.) · doi:10.1088/1367-2630/12/9/095015
[200] Finazzi, S. and Parentani, R., ”Spectral properties of acoustic black hole radiation: broadening the horizon”, arXiv e-print, (2010). [arXiv:1012.1556 [gr-qc]]. (Cited on page 87.)
[201] Finne, A.P., Eltsov, V.B., Hanninen, R., Kopnin, N.B., Kopu, J., Krusius, M., Tsubota, M. and Volovik, G.E., ”Dynamics of vortices and interfaces in superfluid 3He”, Rep. Prog. Phys., 69, 3157–3230, (2006). [DOI]. (Cited on page 100.) · doi:10.1088/0034-4885/69/12/R03
[202] Finne, A.P., Eltsov, V.B., Hänninen, R., Kopnin, N.B., Kopu, J., Krusius, M., Tsubota, M. and Volovik, G.E., ”Dynamics of vortices and interfaces in superfluid 3He”, Rep. Prog. Phys., 69, 3157, (2006). [DOI], [arXiv:cond-mat/0606619]. (Cited on page 100.) · doi:10.1088/0034-4885/69/12/R03
[203] Fischer, U.R., ”Motion of quantized vortices as elementary objects”, Ann. Phys. (N.Y.), 278, 62–85, (1999). [DOI], [cond-mat/9907457]. (Cited on page 48.) · Zbl 1005.82514 · doi:10.1006/aphy.1999.5969
[204] Fischer, U.R., ”Quasiparticle universes in Bose-Einstein condensates”, Mod. Phys. Lett. A, 19, 1789–1812, (2004). [DOI], [cond-mat/0406086]. (Cited on page 44.) · Zbl 1076.83535 · doi:10.1142/S0217732304015099
[205] Fischer, U.R., ”Dynamical Aspects of Analogue Gravity: The Backreaction of Quantum Fluctuations in Dilute Bose-Einstein Condensates”, in Unruh, W.G. and Schützhold, R., eds., Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Lecture Notes in Physics, 718, pp. 93–113, (Springer, Berlin; New York, 2007). [DOI], [arXiv:cond-mat/0512537]. (Cited on page 44.) · Zbl 1142.83007
[206] Fischer, U.R. and Schützhold, R., ”Quantum simulation of cosmic inflation in two-component Bose-Einstein condensates”, Phys. Rev. A, 70, 063615, (2004). [DOI], [cond-mat/0406470]. (Cited on pages 44 and 96.) · doi:10.1103/PhysRevA.70.063615
[207] Fischer, U.R. and Visser, M., ”Riemannian geometry of irrotational vortex acoustics”, Phys. Rev. Lett., 88, 110201, 1–4, (2002). [DOI], [cond-mat/0110211]. (Cited on page 43.)
[208] Fischer, U.R. and Visser, M., ”On the space-time curvature experienced by quasiparticle excitations in the Painlevé-Gullstrand effective geometry”, Ann. Phys. (N.Y.), 304, 22–39, (2003). [DOI], [cond-mat/0205139]. (Cited on page 43.) · Zbl 1074.83012 · doi:10.1016/S0003-4916(03)00011-3
[209] Fischer, U.R. and Visser, M., ”Warped space-time for phonons moving in a perfect nonrelativistic fluid”, Europhys. Lett., 62, 1–7, (2003). [DOI], [gr-qc/0211029]. (Cited on page 43.) · doi:10.1209/epl/i2003-00103-6
[210] Fischer, U.R. and Volovik, G.E., ”Thermal quasi-equilibrium states across Landau horizons in the effective gravity of superfluids”, Int. J. Mod. Phys. D, 10, 57–88, (2001). [gr-qc/0003017]. (Cited on page 43.) · doi:10.1142/S0218271801000962
[211] Fiurášek, J., Leonhardt, U. and Parentani, R., ”Slow-light pulses in moving media”, Phys. Rev. A, 65, 011802, 1–4, (2002). [quant-ph/0011100]. (Cited on pages 43 and 73.)
[212] Flato, M., Sternheimer, D. and Fronsdal, C., ”Difficulties with massless particles”, Commun. Math. Phys., 90, 563, (1983). [DOI]. (Cited on page 106.) · doi:10.1007/BF01216186
[213] Fock, V.A., The Theory of Space, Time, and Gravitation, (Pergamon, New York, 1964), 2nd edition. (Cited on page 15.) · Zbl 0085.42301
[214] Fonseca-Barbatti, C., Novello, M., Salim, J.M. and Arcuri, R.C., ”Creation of a wormhole due to nonlinear electrodynamics”, Mod. Phys. Lett. A, 17, 1305–1314, (2002). [DOI]. (Cited on pages 43 and 58.) · Zbl 1083.83545 · doi:10.1142/S0217732302007235
[215] Ford, L.H., ”Quantum field theory in curved spacetime”, arXiv e-print, (1997). [gr-qc/9707062]. (Cited on page 48.)
[216] Ford, L.H. and Svaiter, N.F., ”Cosmological and black hole horizon fluctuations”, Phys. Rev. D, 56, 2226–2235, (1997). [DOI], [gr-qc/9704050]. (Cited on page 89.) · doi:10.1103/PhysRevD.56.2226
[217] Ford, L.H. and Svaiter, N.F., ”A Fluid Analog Model for Boundary Effects in Field Theory”, Phys. Rev. D, 80, 065034, (2009). [DOI], [arXiv:0903.2694 [quant-ph]]. (Cited on page 46.) · doi:10.1103/PhysRevD.80.065034
[218] Ford, L.H. and Svaiter, N.F., ”Quantum Density Fluctuations in Classical Liquids”, Phys. Rev. Lett., 102, 030602, (2009). [DOI]. (Cited on page 46.) · doi:10.1103/PhysRevLett.102.030602
[219] Foster, B.Z. and Jacobson, T., ”Post-Newtonian parameters and constraints on Einstein-aether theory”, Phys. Rev. D, 73, 064015, (2006). [DOI], [arXiv:gr-qc/0509083 [gr-qc]]. (Cited on page 104.) · doi:10.1103/PhysRevD.73.064015
[220] Franchini, F. and Kravtsov, V.E., ”Horizon in Random Matrix Theory, Hawking Radiation and Flow of Cold Atoms”, Phys. Rev. Lett., 103, 166401, (2009). [DOI], [arXiv:0905.3533 [cond-mat.str-el]]. (Cited on page 46.) · doi:10.1103/PhysRevLett.103.166401
[221] Friedan, D., ”A tentative theory of large distance physics”, J. High Energy Phys., 2003(10), 063, (2003). [DOI], [hep-th/0204131]. (Cited on page 110.) · doi:10.1088/1126-6708/2003/10/063
[222] Frolov, V.P., ”Black Hole Entropy and Physics at Planckian Scales”, in Sánchez, N. and Zichichi, A., eds., String Gravity and Physics at the Planck Energy Scale, Proceedings of the NATO Advanced Study Institute, Erice, Italy, September 18–19, 1995, NATO ASI Series C, 476, (Kluwer, Dordrecht; Boston, 1996). [hep-th/9510156]. (Cited on page 89.)
[223] Frolov, V.P. and Larsen, A.L., ”Stationary strings and 2-D black holes”, Nucl. Phys. B, 449, 149–158, (1995). [DOI], [hep-th/9503060]. (Cited on page 89.) · Zbl 1009.81549 · doi:10.1016/0550-3213(95)00302-9
[224] Fulling, S.A., Aspects of Quantum Field Theory in Curved Space-Time, (Cambridge University Press, Cambridge; New York, 1989). [Google Books]. (Cited on page 102.) · Zbl 0677.53081
[225] Fursaev, D.V., ”Entanglement and gravitational physics”, J. Phys. A: Math. Gen., 39, 6385–6391, (2006). [DOI]. (Cited on page 45.) · doi:10.1088/0305-4470/39/21/S32
[226] Fursaev, D.V., ”Entanglement entropy in critical phenomena and analogue models of quantum gravity”, Phys. Rev. D, 73, 124025, (2006). [DOI], [arXiv:hep-th/0602134]. (Cited on page 45.) · doi:10.1103/PhysRevD.73.124025
[227] Furtado, C., de M Carvalho, A.M., Garcia de Andrade, L.C. and Moraes, F., ”Holonomy, Aharonov-Bohm effect and phonon scattering in superfluids”, arXiv e-print, (2004). [gr-qc/0401025]. (Cited on page 47.)
[228] Furuhashi, H., Nambu, Y. and Saida, H., ”Simulation of Acoustic Black Hole in a Laval Nozzle”, Class. Quantum Grav., 23, 5417–5438, (2006). [DOI], [arXiv:gr-qc/0601066]. (Cited on page 100.) · Zbl 1117.83343 · doi:10.1088/0264-9381/23/17/018
[229] Gambini, R. and Pullin, J., ”Nonstandard optics from quantum spacetime”, Phys. Rev. D, 59, 124021, (1999). [DOI], [gr-qc/9809038]. (Cited on page 110.) · Zbl 0948.83002 · doi:10.1103/PhysRevD.59.124021
[230] Garay, L.J., ”Quantum gravity and minimum length”, Int. J. Mod. Phys. A, 10, 145–166, (1995). [DOI], [gr-qc/9403008]. (Cited on page 48.) · doi:10.1142/S0217751X95000085
[231] Garay, L.J., Anglin, J.R., Cirac, J.I. and Zoller, P., ”Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates”, Phys. Rev. Lett., 85, 4643-1–5, (2000). [DOI], [gr-qc/0002015]. (Cited on pages 43, 63, 85, 91, 92, 94, and 100.) · doi:10.1103/PhysRevLett.85.4643
[232] Garay, L.J., Anglin, J.R., Cirac, J.I. and Zoller, P., ”Sonic black holes in dilute Bose-Einstein condensates”, Phys. Rev. A, 63, 023611, 1–13, (2001). [DOI], [gr-qc/0005131]. (Cited on pages 43, 63, 85, 91, 92, 94, and 100.) · doi:10.1103/PhysRevA.63.023611
[233] Garcia de Andrade, L.C., ”Irrotational vortex geometry of torsion loops”, arXiv e-print, (2004). [gr-qc/0409115]. (Cited on page 36.)
[234] Garcia de Andrade, L.C., ”Non-Riemannian acoustic black holes: Hawking radiation and Lorentz symmetry breaking”, arXiv e-print, (2004). [gr-qc/0411103]. (Cited on page 36.)
[235] Garcia de Andrade, L.C., ”Non-Riemannian geometry of turbulent acoustic flows and analog gravity”, arXiv e-print, (2004). [gr-qc/0410036]. (Cited on page 36.)
[236] Garcia de Andrade, L.C., ”Non-Riemannian geometry of vortex acoustics”, Phys. Rev. D, 70, 064004, (2004). [DOI], [gr-qc/0405062]. (Cited on page 36.) · doi:10.1103/PhysRevD.70.064004
[237] Garcia de Andrade, L.C., ”Non-Riemannian vortex geometry of rotational viscous fluids and breaking of the acoustic Lorentz invariance”, Phys. Lett. A, 339, 188–193, (2005). [DOI], [gr-qc/0409116]. (Cited on page 36.) · Zbl 1137.83338 · doi:10.1016/j.physleta.2005.02.076
[238] Garcia de Andrade, L.C., ”On the necessity of non-Riemannian acoustic spacetime in fluids with vorticity”, Phys. Lett. A, 346, 327–329, (2005). [DOI], [gr-qc/0502106]. (Cited on page 36.) · Zbl 1195.76358 · doi:10.1016/j.physleta.2005.07.023
[239] Garcia de Andrade, L.C., ”Relativistic superfluid hydrodynamics”, arXiv e-print, (2005). [gr-qc/0503088]. (Cited on page 36.)
[240] Garcia de Andrade, L.C., de M Carvalho, A.M. and Furtado, C., ”Geometric phase for fermionic quasiparticles scattering by disgyration in superfluids”, Europhys. Lett., 67, 538–544, (2004). [gr-qc/0406057]. (Cited on page 36.) · doi:10.1209/epl/i2004-10096-6
[241] Ge, X.-H. and Kim, S.-W., ”Black hole analogues in braneworld scenario”, arXiv e-print, (2007). [arXiv:0705.1396 [hep-th]]. (Cited on page 48.)
[242] Ge, X.-H. and Kim, S.-W., ”Probing extra dimensions with higher dimensional black hole analogues?”, Phys. Lett. B, 652, 349–358, (2007). [DOI], [arXiv:0705.1404 [hep-th]]. (Cited on page 48.) · Zbl 1248.83118 · doi:10.1016/j.physletb.2007.06.079
[243] Ge, X.-H. and Shen, Y.-G., ”Quantum teleportation with sonic black holes”, Phys. Lett. B, 623, 141–146, (2005). [DOI], [arXiv:quant-ph/0507166]. (Cited on page 44.) · Zbl 1247.83087 · doi:10.1016/j.physletb.2005.07.036
[244] Ghafarnejad, H. and Salehi, H., ”Hadamard renormalization, conformal anomaly and cosmological event horizons”, Phys. Rev. D, 56, 4633–4639, (1997). [DOI], [hep-th/9709158]. (Cited on page 48.) · doi:10.1103/PhysRevD.56.4633
[245] Gibbons, G.W. and Hawking, S.W., ”Action integrals and partition functions in quantum gravity”, Phys. Rev. D, 15, 2752–2756, (1977). [DOI]. (Cited on page 23.) · doi:10.1103/PhysRevD.15.2752
[246] Gibbons, G.W., Herdeiro, C.A.R., Warnick, C.M. and Werner, M.C., ”Stationary Metrics and Optical Zermelo-Randers-Finsler Geometry”, Phys. Rev. D, 79, 044022, (2009). [DOI], [arXiv:0811.2877 [gr-qc]]. (Cited on pages 34 and 46.) · doi:10.1103/PhysRevD.79.044022
[247] Giovanazzi, S., ”Hawking Radiation in Sonic Black Holes”, Phys. Rev. Lett., 94, 061302, 1–4, (2005). [DOI], [physics/0411064]. (Cited on page 44.) · doi:10.1103/PhysRevLett.94.061302
[248] Giovanazzi, S., ”The sonic analogue of black hole radiation”, J. Phys. B: At. Mol. Opt. Phys., 39, S109–S120, (2006). [DOI], [arXiv:cond-mat/0604541]. (Cited on page 45.) · doi:10.1088/0953-4075/39/10/S11
[249] Giovanazzi, S., Farrell, C., Kiss, T. and Leonhardt, U., ”Conditions for one-dimensional supersonic flow of quantum gases”, Phys. Rev. A, 70, 063602, (2004). [DOI], [cond-mat/0405007]. (Cited on pages 34 and 44.) · doi:10.1103/PhysRevA.70.063602
[250] Girelli, F., Liberati, S., Percacci, R. and Rahmede, C., ”Modified dispersion relations from the renormalization group of gravity”, Class. Quantum Grav., 24, 3995–4008, (2007). [DOI], [arXiv:gr-qc/0607030]. (Cited on page 45.) · Zbl 1205.83028 · doi:10.1088/0264-9381/24/16/003
[251] Girelli, F., Liberati, S. and Sindoni, L., ”Phenomenology of quantum gravity and Finsler geometry”, Phys. Rev. D, 75, 064015, (2007). [DOI], [arXiv:gr-qc/0611024]. (Cited on page 45.) · doi:10.1103/PhysRevD.75.064015
[252] Girelli, F., Liberati, S. and Sindoni, L., ”Gravitational dynamics in Bose-Einstein condensates”, Phys. Rev. D, 78, 084013, (2008). [DOI], [arXiv:0807.4910 [gr-qc]]. (Cited on pages 46, 107, and 108.) · doi:10.1103/PhysRevD.78.084013
[253] Girelli, F., Liberati, S. and Sindoni, L., ”Emergence of Lorentzian signature and scalar gravity”, Phys. Rev. D, 79, 044019, (2009). [DOI]. (Cited on page 108.) · doi:10.1103/PhysRevD.79.044019
[254] Girelli, F., Liberati, S. and Sindoni, L., ”Is the notion of time really fundamental?”, arXiv e-print, (2009). [arXiv:0903.4876 [gr-qc]]. (Cited on page 46.) · Zbl 1360.83049
[255] Girelli, F., Liberati, S. and Sindoni, L., ”On the emergence of time and gravity”, Phys. Rev. D, 79, 044019, (2009). [DOI], [arXiv:0806.4239 [gr-qc]]. (Cited on page 46.) · doi:10.1103/PhysRevD.79.044019
[256] Giulini, D., ”Remarks on the Notions of General Covariance and Background Independence”, in Stamatescu, I.-O. and Seiler, E., eds., Approaches to Fundamental Physics: An Assessment of Current Theoretical Ideas, Lecture Notes in Physics, 721, pp. 105–120, (Springer, Berlin; New York, 2007). [DOI], [arXiv:gr-qc/0603087 [gr-qc]]. (Cited on page 105.) · Zbl 1151.83010
[257] Glass, E.N. and Krisch, J.P., ”Schwarzschild atmospheric processes: A classical path to the quantum”, Gen. Relativ. Gravit., 32, 735–741, (2000). [DOI], [gr-qc/9910080]. (Cited on page 89.) · Zbl 0988.83030 · doi:10.1023/A:1001923320156
[258] Gordon, W., ”Zur Lichtfortpflanzung nach der Relativitätstheorie”, Ann. Phys. (Leipzig), 72, 421–456, (1923). [DOI]. (Cited on page 40.) · JFM 49.0653.07 · doi:10.1002/andp.19233772202
[259] Górski, A.Z. and Szmigielski, J., ”On Pairs of Difference Operators Satisfying: [D,X]=Id”, J. Math. Phys., 39, 545–568, (1998). [DOI], [hep-th/9703015]. (Cited on page 48.) · Zbl 0921.39006 · doi:10.1063/1.532322
[260] Goulart de Oliveira Costa, É. and Perez Bergliaffa, S.E., ”A classification of the effective metric in nonlinear electrodynamics”, Class. Quantum Grav., 26, 135015, (2009). [DOI], [arXiv:0905.3673 [gr-qc]]. (Cited on page 46.) · Zbl 1171.83352 · doi:10.1088/0264-9381/26/13/135015
[261] Griffin, A., Excitations in a Bose-condensed Liquid, Cambridge Studies in Low Temperature Physics, 4, (Cambridge University Press, Cambridge; New York, 1993). [Google Books]. (Cited on page 63.)
[262] Gu, Zheng-Cheng and Wen, Xiao-Gang, ”A lattice bosonic model as a quantum theory of gravity”, arXiv e-print, (2006). [arXiv:gr-qc/0606100]. (Cited on page 105.)
[263] Gu, Z.-C. and Wen, X.-G., ”Emergence of helicity +/2 modes (gravitons) from qubit models”, arXiv e-print, (2009). [arXiv:0907.1203 [gr-qc]]. (Cited on page 105.)
[264] Gullstrand, A., ”Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie”, Ark. Mat. Astron. Fys., 16(8), 1–15, (1922). (Cited on page 28.) · JFM 48.1037.03
[265] Hadamard, J., Leçons sur la propagation des ondes et les équations de l’hydrodynamique (Lectures on the propagation of waves and the equations of hydrodynamics), (Hermann, Paris, 1903). (Cited on page 61.)
[266] Hambli, N. and Burgess, C.P., ”Hawking radiation and ultraviolet regulators”, Phys. Rev. D, 53, 5717–5722, (1996). [DOI], [hep-th/9510159]. (Cited on page 89.) · doi:10.1103/PhysRevD.53.5717
[267] Hamilton, A.J.S. and Lisle, J.P., ”The river model of black holes”, Am. J. Phys., 76, 519–532, (2008). [DOI], [gr-qc/0411060]. (Cited on page 47.) · doi:10.1119/1.2830526
[268] Hamma, A., Markopoulou, F., Lloyd, S., Caravelli, F., Severini, S. and Markström, K., ”Quantum Bose-Hubbard model with an evolving graph as a toy model for emergent spacetime”, Phys. Rev. D, 81, 104032, (2010). [DOI], [arXiv:0911.5075 [gr-qc]]. (Cited on page 46.) · doi:10.1103/PhysRevD.81.104032
[269] Hassan, S.F. and Sloth, M.S., ”Trans-Planckian effects in inflationary cosmology and the modified uncertainty principle”, Nucl. Phys. B, 674, 434–458, (2003). [DOI], [hep-th/0204110]. (Cited on page 96.) · Zbl 1097.83550 · doi:10.1016/j.nuclphysb.2003.09.041
[270] Hawking, S.W., ”Black hole explosions?”, Nature, 248, 30–31, (1974). [DOI]. (Cited on pages 23 and 78.) · Zbl 1370.83053 · doi:10.1038/248030a0
[271] Hawking, S.W., ”Particle creation by black holes”, Commun. Math. Phys., 43, 199–220, (1975). [DOI]. Online version (accessed 23 March 2011): http://projecteuclid.org/getRecord?id=euclid.cmp/1103899181. (Cited on pages 23 and 78.) · Zbl 1378.83040 · doi:10.1007/BF02345020
[272] Hawking, S.W., ”Chronology protection conjecture”, Phys. Rev. D, 46, 603–611, (1992). [DOI]. (Cited on page 17.) · doi:10.1103/PhysRevD.46.603
[273] Hawking, S.W., ”The Chronology Protection Conjecture”, in Sato, H. and Nakamura, T., eds., The Sixth Marcel Grossmann Meeting: on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held in Kyoto, Japan, 23–29 June 1991, pp. 3–16, (World Scientific, Singapore, 1992). (Cited on page 17.)
[274] Hawking, S.W., ”Chronology Protection: Making the World Safe for Historians”, in Hawking, S.W., Thorne, K.S., Novikov, I., Ferris, T. and Lightman, A., eds., The Future of Spacetime, pp. 87–108, (W.W. Norton, New York; London, 2002). (Cited on page 17.)
[275] Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [Google Books]. (Cited on pages 15, 16, 17, 18, 29, and 33.) · Zbl 0265.53054
[276] Hehl, F.W. and Obukhov, Y.N., ”To consider the electromagnetic field as fundamental, and the metric only as a subsidiary field”, Found. Phys., submitted, (2004). [physics/0404101]. (Cited on page 58.) · Zbl 1119.78004
[277] Hehl, F.W. and Obukhov, Y.N., ”Linear media in classical electrodynamics and the Post constraint”, Phys. Lett. A, 334, 249–259, (2005). [DOI], [physics/0411038]. (Cited on page 58.) · Zbl 1123.78302 · doi:10.1016/j.physleta.2004.11.038
[278] Helfer, A.D., ”Trans-Planckian modes, back-reaction, and the Hawking process”, arXiv e-print, (2000). [gr-qc/0008016]. (Cited on pages 80, 81, and 89.)
[279] Helfer, A.D., ”Do black holes radiate?”, Rep. Prog. Phys., 66, 943–1008, (2003). [DOI], [gr-qc/0304042]. (Cited on pages 80, 81, and 89.) · doi:10.1088/0034-4885/66/6/202
[280] Helfer, A.D., ”State reduction and energy extraction from black holes”, Phys. Lett. A, 329, 277–283, (2004). [DOI], [gr-qc/0407055]. (Cited on pages 80, 81, and 89.) · Zbl 1209.83025 · doi:10.1016/j.physleta.2004.07.021
[281] Henson, J., ”The causal set approach to quantum gravity”, arXiv e-print, (2006). [arXiv:gr-qc/0601121]. (Cited on page 48.)
[282] Heyl, J.S., ”See a Black Hole on a Shoestring”, Phys. Rev. D, 74, 064029, (2006). [DOI], [arXiv:gr-qc/0602065]. (Cited on page 45.) · doi:10.1103/PhysRevD.74.064029
[283] Himemoto, Y. and Tanaka, T., ”A generalization of the model of Hawking radiation with modified high frequency dispersion relation”, Phys. Rev. D, 61, 064004, 1–18, (2000). [DOI], [gr-qc/9904076]. (Cited on page 83.) · doi:10.1103/PhysRevD.61.064004
[284] Ho, P.-M., ”Regularization of Newton constant, trans-Planckian dispersion relation, and symmetry of particle spectrum”, Class. Quantum Grav., 21, 2641–2650, (2004). [DOI], [hep-th/0308103]. (Cited on page 48.) · Zbl 1049.83011 · doi:10.1088/0264-9381/21/11/009
[285] Hochberg, D., ”Evaporating black holes and collapsing bubbles in fluids”, unpublished, (1997). (Cited on page 42.)
[286] Hochberg, D. and Pérez-Mercader, J., ”A Liquid Model Analogue for Black Hole Thermodynamics”, Phys. Rev. D, 55, 4880–4888, (1997). [DOI], [gr-qc/9609043]. (Cited on page 42.) · doi:10.1103/PhysRevD.55.4880
[287] Hořava, P., ”Quantum Gravity at a Lifshitz Point”, Phys. Rev. D, 79, 084008, (2009). [DOI], [arXiv:0901.3775 [hep-th]]. (Cited on pages 108 and 111.) · doi:10.1103/PhysRevD.79.084008
[288] Hořava, P., ”Spectral Dimension of the Universe in Quantum Gravity at a Lifshitz Point”, Phys. Rev. Lett., 102, 161301, (2009). [DOI], [arXiv:0902.3657 [hep-th]]. (Cited on pages 108 and 111.) · doi:10.1103/PhysRevLett.102.161301
[289] Hořava, P. and Melby-Thompson, C.M., ”General Covariance in Quantum Gravity at a Lifshitz Point”, Phys. Rev. D, 82, 064027, (2010). [arXiv:1007.2410 [hep-th]]. (Cited on pages 108 and 111.) · doi:10.1103/PhysRevD.82.064027
[290] Horstmann, B., Reznik, B., Fagnocchi, S. and Cirac, J.I., ”Hawking Radiation from an Acoustic Black Hole on an Ion Ring”, Phys. Rev. Lett., 104, 250403, (2010). [DOI], [arXiv:0904.4801[quant-ph]]. (Cited on pages 46 and 88.) · doi:10.1103/PhysRevLett.104.250403
[291] Horstmann, B., Schützhold, R., Reznik, B., Fagnocchi, S. and Cirac, J.I., ”Measurement of Hawking Radiation with Ions in the Quantum Regime”, arXiv e-print, (2010). [arXiv:1008.3494 [quant-ph]]. (Cited on page 47.)
[292] Horwitz, L.P. and Oron, O., ”Classical Gravity as an Eikonal Approximation to a Manifestly Lorentz Covariant Quantum Theory with Brownian Interpretation”, in Reimer, A., ed., Quantum Gravity Research Trends, Horizons in World Physics, 250, (Nova Science, New York, 2005). [gr-qc/0407076]. (Cited on page 48.)
[293] Hossenfelder, S., ”The minimal length and large extra dimensions”, Mod. Phys. Lett. A, 19, 2727–2744, (2004). [DOI], [hep-ph/0410122]. (Cited on page 48.) · Zbl 1065.81608 · doi:10.1142/S0217732304015919
[294] Hossenfelder, S., ”Running coupling with minimal length”, Phys. Rev. D, 70, 105003, (2004). [DOI], [hep-ph/0405127]. (Cited on page 48.) · Zbl 1065.81608 · doi:10.1103/PhysRevD.70.105003
[295] Hossenfelder, S., ”Self-consistency in theories with a minimal length”, Class. Quantum Grav., 23, 1815–1821, (2006). [DOI], [arXiv:hep-th/0510245]. (Cited on page 48.) · Zbl 1089.83004 · doi:10.1088/0264-9381/23/5/N01
[296] Hu, B.L., ”Dynamical finite size effect, inflationary cosmology and thermal particle production”, in Lee, H.C., ed., CAP-NSERC Summer Institute in Theoretical Physics, Edmonton, Alberta, July 10–25, 1987, (World Scientific, Singapore; Teaneck, NJ, 1988). (Cited on page 96.)
[297] Hu, B.L., ”Nonequilibrium quantum fields in cosmology: Comments on selected current topics”, in De Vega, H.J. and Sánchez, N., eds., Second Paris Cosmology Colloquium, 2–4 June, 1994, Observatoire de Paris, France, p. 111, (World Scientific, Singapore; River Edge, NJ, 1995). [gr-qc/9409053]. (Cited on page 96.)
[298] Hu, B.L., ”Stochastic gravity”, Int. J. Theor. Phys., 38, 2987–3037, (1999). [gr-qc/9902064]. (Cited on page 103.) · Zbl 0965.83002 · doi:10.1023/A:1026664317157
[299] Hu, B.L., ”Can spacetime be a condensate?”, Int. J. Theor. Phys., 44, 1785–1806, (2005). [DOI], [arXiv:gr-qc/0503067]. (Cited on page 44.) · Zbl 1119.83336 · doi:10.1007/s10773-005-8895-0
[300] Hu, B.L., ”Emergent/Quantum Gravity: Macro/Micro Structures of Spacetime”, J. Phys.: Conf. Ser., 174, 012015, (2009). [DOI], [arXiv:0903.0878 [gr-qc]]. (Cited on page 46.) · doi:10.1088/1742-6596/174/1/012015
[301] Hu, B.L. and Verdaguer, E., ”Stochastic gravity: A primer with applications”, Class. Quantum Grav., 20, R1–R42, (2003). [DOI], [gr-qc/0211090]. (Cited on page 103.) · Zbl 1029.83001 · doi:10.1088/0264-9381/20/6/201
[302] Hu, B.L. and Verdaguer, E., ”Stochastic Gravity: Theory and Applications”, Living Rev. Relativity, 7, lrr-2004-3, (2004). URL (accessed 31 May 2005): http://www.livingreviews.org/lrr-2004-3. (Cited on page 103.)
[303] Huhtala, P. and Volovik, G.E., ”Fermionic Microstates within the Painlevé-Gullstrand Black Hole”, J. Exp. Theor. Phys., 94, 853–861, (2002). [DOI], [gr-qc/0111055]. (Cited on page 43.) · doi:10.1134/1.1484981
[304] Indurain, J. and Liberati, S., ”The Theory of a Quantum Noncanonical Field in Curved Spacetimes”, Phys. Rev. D, 80, 045008, (2009). [DOI], [arXiv:0905.4568 [hep-th]]. (Cited on page 46.) · doi:10.1103/PhysRevD.80.045008
[305] Israel, W., ”Dark stars: the evolution of an idea”, in Hawking, S.W. and Israel, W., eds., Three Hundred Years of Gravitation, pp. 199–276, (Cambridge University Press, Cambridge; New York, 1987). (Cited on page 28.) · Zbl 0966.83504
[306] Ito, K. and Ugakkai, N.S., eds., Encyclopedic Dictionary of Mathematics, (MIT, Cambridge, MA, 1987), 2nd edition. (Cited on pages 58 and 62.)
[307] Jacobson, T.A., ”Black-hole evaporation and ultrashort distances”, Phys. Rev. D, 44, 1731–1739, (1991). [DOI]. (Cited on pages 42, 81, 82, and 98.) · doi:10.1103/PhysRevD.44.1731
[308] Jacobson, T.A., ”Black hole radiation in the presence of a short distance cutoff”, Phys. Rev. D, 48, 728–741, (1993). [DOI], [hep-th/9303103]. (Cited on pages 42, 81, 82, and 98.) · doi:10.1103/PhysRevD.48.728
[309] Jacobson, T.A., ”Introduction to Black Hole Microscopy”, in Macías, A., Quevedo, H., Obregón, O. and Matos, T., eds., Recent Developments in Gravitation and Mathematical Physics, Proceedings of the First Mexican School on Gravitation and Mathematical Physics, Guanajuato, Mexico, 12–16 December 1994, (World Scientific, Singapore; River Edge, NJ, 1996). [hep-th/9510026]. (Cited on pages 42 and 78.)
[310] Jacobson, T.A., ”On the origin of the outgoing black hole modes”, Phys. Rev. D, 53, 7082–7088, (1996). [DOI], [hep-th/9601064]. (Cited on pages 27, 42, 75, and 82.) · doi:10.1103/PhysRevD.53.7082
[311] Jacobson, T.A., ”Trans-Planckian redshifts and the substance of the space-time river”, Prog. Theor. Phys. Suppl., 136, 1–17, (1999). [DOI], [hep-th/0001085]. (Cited on pages 88 and 89.) · Zbl 0985.83003 · doi:10.1143/PTPS.136.1
[312] Jacobson, T.A., ”Lorentz violation and Hawking radiation”, in Kostelecký, V.A., ed., CPT and Lorentz Symmetry, Proceedings of the Second Meeting, Bloomington, USA, 15–18 August 2001, pp. 316–320, (World Scientific, Singapore; River Edge, NJ, 2002). [DOI], [gr-qc/0110079]. Online version (accessed 22 March 2011): http://eproceedings.worldscinet.com/9789812778123/9789812778123_0039.html. (Cited on page 43.)
[313] Jacobson, T.A., ”Introduction to Quantum Fields in Curved Spacetime and the Hawking Effect”, in Gomberoff, A. and Marolf, D., eds., Lectures on Quantum Gravity, 2002 Pan-American Advanced Studies Institute School, Valdivia, Chile, January 4–14, 2002, Series of the Centro de Estudios Científicos, pp. 39–90, (Springer, New York, 2005). [gr-qc/0308048]. (Cited on pages 44 and 87.)
[314] Jacobson, T., ”Einstein-aether gravity: a status report”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11–15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). [arXiv:0801.1547 [gr-qc]]. URL (accessed 13 December 2010): http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=43. (Cited on page 104.)
[315] Jacobson, T.A. and Kang, G., ”Conformal invariance of black hole temperature”, Class. Quantum Grav., 10, L201–L206, (1993). [DOI], [gr-qc/9307002]. (Cited on pages 22, 27, and 29.) · Zbl 0794.53056 · doi:10.1088/0264-9381/10/11/002
[316] Jacobson, T.A. and Koike, T., ”Black hole and baby universe in a thin film of 3He-A”, in Novello, M., Visser, M. and Volovik, G., eds., Artificial Black Holes, pp. 87–108, (World Scientific, Singapore; River Edge, NJ, 2002). [cond-mat/0205174], [Google Books]. (Cited on page 43.)
[317] Jacobson, T.A., Liberati, S. and Mattingly, D., ”Lorentz violation and Crab synchrotron emission: A new constraint far beyond the Planck scale”, Nature, 424, 1019–1021, (2003). [astro-ph/0212190]. (Cited on pages 43 and 110.) · doi:10.1038/nature01882
[318] Jacobson, T.A., Liberati, S. and Mattingly, D., ”Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics”, Phys. Rev. D, 67, 124011, 1–26, (2003). [DOI], [hep-ph/0209264]. (Cited on pages 43 and 110.) · doi:10.1103/PhysRevD.67.124011
[319] Jacobson, T.A., Liberati, S. and Mattingly, D., ”Astrophysical Bounds on Planck Suppressed Lorentz Violation”, in Amelino-Camelia, G. and Kowalski-Glikman, J., eds., Planck Scale Effects in Astrophysics and Cosmology, Lecture Notes in Physics, 669, pp. 101–130, (Springer, Berlin; New York, 2005). [DOI], [hep-ph/0407370]. (Cited on pages 44 and 110.)
[320] Jacobson, T.A., Liberati, S. and Mattingly, D., ”Quantum gravity phenomenology and Lorentz violation”, in Trampetić, J. and Wess, J., eds., Particle Physics and the Universe, Proceedings of the 9th Adriatic Meeting, September 2003, Dubrovnik, Springer Proceedings in Physics, 98, (Springer, Berlin; New York, 2005). [gr-qc/0404067]. (Cited on pages 44 and 110.)
[321] Jacobson, T., Liberati, S. and Mattingly, D., ”Lorentz violation at high energy: concepts, phenomena and astrophysical constraints”, Ann. Phys. (N.Y.), 321, 150–196, (2006). [DOI], [arXiv:astro-ph/0505267]. (Cited on page 110.) · Zbl 1086.85001 · doi:10.1016/j.aop.2005.06.004
[322] Jacobson, T.A. and Mattingly, D., ”Hawking radiation on a falling lattice”, Phys. Rev. D, 61, 024017, 1–10, (2000). [hep-th/9908099]. (Cited on pages 42 and 75.)
[323] Jacobson, T. and Mattingly, D., ”Einstein-aether waves”, Phys. Rev. D, 70, 024003, (2004). [DOI], [arXiv:gr-qc/0402005 [gr-qc]]. (Cited on page 104.) · doi:10.1103/PhysRevD.70.024003
[324] Jacobson, T. and Parentani, R., ”Black hole entanglement entropy regularized in a freely falling frame”, Phys. Rev. D, 76, 024006, (2007). [DOI], [arXiv:hep-th/0703233]. (Cited on page 45.) · Zbl 1222.83102 · doi:10.1103/PhysRevD.76.024006
[325] Jacobson, T. and Parentani, R., ”Horizon surface gravity as 2d geodesic expansion”, Class. Quantum Grav., 25, 195009, (2008). [DOI], [arXiv:0806.1677 [gr-qc]]. (Cited on page 48.) · Zbl 1151.83013 · doi:10.1088/0264-9381/25/19/195009
[326] Jacobson, T.A. and Volovik, G.E., ”Effective spacetime and Hawking radiation from moving domain wall in thin film of 3He-A”, J. Exp. Theor. Phys. Lett., 68, 874–880, (1998). [DOI], [gr-qc/9811014]. (Cited on pages 42, 71, and 79.) · doi:10.1134/1.567808
[327] Jacobson, T.A. and Volovik, G.E., ”Event horizons and ergoregions in 3He”, Phys. Rev. D, 58, 064021, 1–7, (1998). [DOI]. (Cited on pages 71 and 79.) · doi:10.1103/PhysRevD.58.064021
[328] Jain, P., Weinfurtner, S., Visser, M. and Gardiner, C.W., ”Analog model of a Friedmann-Robertson-Walker universe in Bose-Einstein condensates: Application of the classical field method”, Phys. Rev. A, 76, 033616, (2007). [DOI], [arXiv:0705.2077 [cond-mat.other]]. (Cited on pages 30, 32, and 96.) · doi:10.1103/PhysRevA.76.033616
[329] Jannes, G., ”On the condensed matter scheme for emergent gravity and interferometry”, arXiv e-print, (2008). [arXiv:0810.0613 [gr-qc]]. (Cited on page 46.)
[330] Jannes, G., ”Condensed matter lessons about the origin of time”, arXiv e-print, (2009). [arXiv:0904.3627 [gr-qc]]. (Cited on page 46.) · Zbl 1317.83004
[331] Jannes, G., Emergent gravity: the BEC paradigm, Ph.D. Thesis, (Universidad Complutense de Madrid, Madrid, 2009). [arXiv:0907.2839 [gr-qc]]. (Cited on page 46.)
[332] Jannes, G., ”Some comments on ’The Mathematical Universe”’, Found. Phys., 39, 397–406, (2009). [DOI], [arXiv:0904.0867 [gr-qc]]. (Cited on page 48.) · Zbl 1168.81306 · doi:10.1007/s10701-009-9286-9
[333] Jannes, G., Barceló, C., Cano, A. and Garay, L.J., ”QNM spectrum in (1+1)-dimensional BEC black holes”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11–15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). URL (accessed 13 December 2010): http://pos.sissa.it/contribution?id=PoS(QG-Ph)021. (Cited on page 45.)
[334] Jannes, G., Piquet, R., Maïssa, P., Mathis, C. and Rousseaux, G., ”The circular jump is a white hole”, arXiv e-print, (2010). [arXiv:1010.1701 [physics.flu-dyn]]. (Cited on pages 99 and 111.)
[335] Jevicki, A. and Thaler, J., ”Dynamics of black hole formation in an exactly solvable model”, Phys. Rev. D, 66, 024041, 1–6, (2002). [DOI], [hep-th/0203172]. (Cited on page 89.) · doi:10.1103/PhysRevD.66.024041
[336] Kagan, Y., Surkov, E.L. and Shlyapnikov, G.V., ”Evolution of a Bose-condensed gas under variations of the confining potential”, Phys. Rev. A, 54, R1753–R1756, (1996). [DOI]. (Cited on page 30.) · doi:10.1103/PhysRevA.54.R1753
[337] Kagan, Y., Surkov, E.L. and Shlyapnikov, G.V., ”Evolution and global collapse of trapped Bose condensates under variations of the scattering length”, Phys. Rev. Lett., 79, 2604–2607, (1997). [DOI], [physics/9705005]. (Cited on page 30.) · doi:10.1103/PhysRevLett.79.2604
[338] Kash, M.M. et al., ”Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas”, Phys. Rev. Lett., 82, 5229–5232, (1999). [DOI]. (Cited on page 72.) · doi:10.1103/PhysRevLett.82.5229
[339] Katsnelson, M.I. and Novoselov, K.S., ”Graphene: New bridge between condensed matter physics and quantum electrodynamics”, Solid State Commun., 143, 3–13, (2007). [DOI]. (Cited on page 76.) · doi:10.1016/j.ssc.2007.02.043
[340] Katti, R., Samuel, J. and Sinha, S., ”The Universe in a Soap Film”, Class. Quantum Grav., 26, 135018, (2009). [DOI], [arXiv:0904.1057 [gr-qc]]. (Cited on page 46.) · Zbl 1171.83378 · doi:10.1088/0264-9381/26/13/135018
[341] Kempf, A., ”Mode generating mechanism in inflation with a cutoff”, Phys. Rev. D, 63, 083514, 1–5, (2001). [DOI], [astro-ph/0009209]. (Cited on page 43.) · doi:10.1103/PhysRevD.63.083514
[342] Kempf, A., ”A covariant information-density cutoff in curved space-time”, Phys. Rev. Lett., 92, 221301, (2004). [DOI], [gr-qc/0310035]. (Cited on page 48.) · Zbl 1267.81090 · doi:10.1103/PhysRevLett.92.221301
[343] Kempf, A. and Niemeyer, J.C., ”Perturbation spectrum in inflation with cutoff”, Phys. Rev. D, 64, 103501, 1–6, (2001). [DOI], [astro-ph/0103225]. (Cited on pages 43 and 96.) · doi:10.1103/PhysRevD.64.103501
[344] Kim, S.-W., Kim, W.T. and Oh, J.J., ”Decay rate and low-energy near-horizon dynamics of acoustic black holes”, Phys. Lett. B, 608, 10–16, (2005). [DOI], [gr-qc/0409003]. (Cited on page 44.) · doi:10.1016/j.physletb.2005.01.012
[345] Kim, W. and Shin, H., ”Anomaly Analysis of Hawking Radiation from Acoustic Black Hole”, J. High Energy Phys., 2007(07), 070, (2007). [DOI], [arXiv:0706.3563 [hep-th]]. (Cited on page 45.) · doi:10.1088/1126-6708/2007/07/070
[346] Kim, W., Son, E.J. and Yoon, M., ”Thermodynamics of (2+1)-dimensional acoustic black hole based on the generalized uncertainty principle”, arXiv e-print, (2008). [arXiv:0801.1439 [gr-qc]]. (Cited on page 46.)
[347] Kim, W.T., Son, E.J., Yoon, M.S. and Park, Y.J., ”Statistical entropy and superradiance in 2+1 dimensional acoustic black holes”, J. Korean Phys. Soc., 49, 15–20, (2006). [gr-qc/0504127]. (Cited on page 44.)
[348] Kiss, T. and Leonhardt, U., ”Towards a classification of wave catastrophes”, J. Opt. A, 6, S246–S247, (2004). [DOI], [physics/0309036]. (Cited on page 49.) · doi:10.1088/1464-4258/6/5/019
[349] Klinkhamer, F.R. and Volovik, G.E., ”Dynamic vacuum variable and equilibrium approach in cosmology”, Phys. Rev. D, 78, 063528, (2008). [DOI], [arXiv:0806.2805 [gr-qc]]. (Cited on page 108.) · Zbl 1347.81064 · doi:10.1103/PhysRevD.78.063528
[350] Klinkhamer, F.R. and Volovik, G.E., ”Self-tuning vacuum variable and cosmological constant”, Phys. Rev. D, 77, 085015, (2008). [DOI], [arXiv:0711.3170 [gr-qc]]. (Cited on page 108.) · Zbl 1347.81064 · doi:10.1103/PhysRevD.77.085015
[351] Klinkhamer, F.R. and Volovik, G.E., ”Towards a solution of the cosmological constant problem”, J. Exp. Theor. Phys. Lett., 91, 259–265, (2010). [DOI], [arXiv:0907.4887 [hep-th]]. (Cited on page 108.) · doi:10.1134/S0021364010060019
[352] Kobes, R., ”Superresonance effect and energy flow in acoustic black holes”, Can. J. Phys., 84, 501–506, (2006). [DOI]. (Cited on page 45.) · doi:10.1139/p06-034
[353] Kocharovskaya, O., Rostovtsev, Y. and Scully, M.O., ”Stopping Light via Hot Atoms”, Phys. Rev. Lett., 86, 628–631, (2001). [DOI]. (Cited on page 72.) · doi:10.1103/PhysRevLett.86.628
[354] Kokkotas, K.D. and Schmidt, B.G., ”Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999-2, (1999). URL (accessed 31 May 2005): http://www.livingreviews.org/lrr-1999-2. (Cited on page 48.) · Zbl 0984.83002
[355] Kolekar, S. and Padmanabhan, T., ”Holography in Action”, Phys. Rev. D, 82, 024036, (2010). [DOI], [arXiv:1005.0619 [gr-qc]]. (Cited on page 47.) · doi:10.1103/PhysRevD.82.024036
[356] Konopka, T., ”Statistical Mechanics of Graphity Models”, Phys. Rev. D, 78, 044032, (2008). [DOI], [arXiv:0805.2283 [hep-th]]. (Cited on page 46.) · doi:10.1103/PhysRevD.78.044032
[357] Konopka, T. and Markopoulou, F., ”Constrained mechanics and noiseless subsystems”, arXiv e-print, (2006). [arXiv:gr-qc/0601028]. (Cited on page 45.)
[358] Konopka, T., Markopoulou, F. and Severini, S., ”Quantum Graphity: a model of emergent locality”, Phys. Rev. D, 77, 104029, (2008). [DOI], [arXiv:0801.0861 [hep-th]]. (Cited on page 46.) · doi:10.1103/PhysRevD.77.104029
[359] Kopnin, N.B. and Volovik, G.E., ”Critical velocity and event horizon in pair-correlated systems with relativistic fermionic quasiparticles”, J. Exp. Theor. Phys. Lett., 67, 528–532, (1998). [DOI], [cond-mat/9712187]. (Cited on pages 42 and 79.) · doi:10.1134/1.567637
[360] Kostelecký, V.A. and Samuel, S., ”Spontaneous breaking of Lorentz symmetry in string theory”, Phys. Rev. D, 39, 683–685, (1989). [DOI]. (Cited on page 110.) · doi:10.1103/PhysRevD.39.683
[361] Kowalski-Glikman, J., ”Testing dispersion relations of quantum kappa-Poincare algebra on cosmological ground”, Phys. Lett. B, 499, 1–8, (2001). [DOI], [astro-ph/0006250]. (Cited on page 48.) · Zbl 0972.83093 · doi:10.1016/S0370-2693(01)00027-2
[362] Kowalski-Glikman, J., ”De Sitter space as an arena for doubly special relativity”, Phys. Lett. B, 547, 291–296, (2002). [DOI], [hep-th/0207279]. (Cited on page 48.) · Zbl 0999.83005 · doi:10.1016/S0370-2693(02)02762-4
[363] Kowalski-Glikman, J., ”Doubly special relativity: A kinematics of quantum gravity?”, in Semikhatov, A.M., Vasiliev, M.V. and Zaikin, V., eds., 3rd International Sakharov Conference on Physics, Proceedings of the conference, Moscow, Russia, June 24–29, 2002, (Scientific World, Moscow, 2002). [hep-th/0209264]. (Cited on page 48.) · Zbl 0999.83005
[364] Kraus, P. and Wilczek, F., ”A Simple Stationary Line Element for the Schwarzschild Geometry, and Some Applications”, arXiv e-print, (June 1994). [gr-qc/9406042]. (Cited on page 28.) · Zbl 1015.83501
[365] Krein, G., Menezes, G. and Svaiter, N.F., ”Analog model for quantum gravity effects: phonons in random fluids”, Phys. Rev. Lett., 105, 131301, (2010). [DOI], [arXiv:1006.3350 [hep-th]]. (Cited on page 47.) · doi:10.1103/PhysRevLett.105.131301
[366] Kugo, T., ”Limitations on the existence of massless composite states”, Phys. Lett. B, 109, 205–208, (1982). [DOI]. (Cited on page 106.) · doi:10.1016/0370-2693(82)90754-7
[367] Kurita, Y., Kobayashi, M., Ishihara, H. and Tsubota, M., ”Particle creation in Bose-Einstein condensates: Theoretical formulation based on conserving gapless mean-field theory”, Phys. Rev. A, 82, 053602, (2010). [DOI], [arXiv:1007.0073 [cond-mat.quant-gas]]. (Cited on page 47.) · doi:10.1103/PhysRevA.82.053602
[368] Kurita, Y., Kobayashi, M., Morinari, T., Tsubota, M. and Ishihara, H., ”Spacetime analogue of Bose-Einstein condensates: Bogoliubov-de Gennes formulation”, arXiv e-print, (2008). [arXiv:0810.3088 [cond-mat.other]]. (Cited on page 46.)
[369] Lahav, O., Itah, A., Blumkin, A., Gordon, C. and Steinhauer, J., ”Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate”, Phys. Rev. Lett., 105, 240401, (2010). [DOI], [arXiv:0906.1337]. (Cited on pages 46, 100, and 111.) · doi:10.1103/PhysRevLett.105.240401
[370] Lamb, H., Hydrodynamics, (Dover, Mineola, NY, 1932), 6th edition. Reissue of 1932 ed., first edition publ. 1879. (Cited on pages 12, 13, and 54.)
[371] Lämmerzahl, C. and Hehl, F.W., ”Riemannian light cone from vanishing birefringence in premetric vacuum electrodynamics”, Phys. Rev. D, 70, 105022, 1–10, (2004). [DOI], [gr-qc/0409072]. (Cited on page 58.) · doi:10.1103/PhysRevD.70.105022
[372] Landau, L.D. and Lifshitz, E.M., Fluid Mechanics, Course of Theoretical Physics, 6, (Pergamon; Addison-Wesley, London; Reading, MA, 1959). (Cited on pages 12, 13, and 34.)
[373] Landau, L.D. and Lifshitz, E.M., The classical theory of fields, (Pergamon Press, Oxford; New York, 1971), 3rd edition. (Cited on page 40.) · Zbl 0178.28704
[374] Landau, L.D., Lifshitz, E.M. and Pitaevskii, L.P., Statistical Physics, Part 2, Course of Theoretical Physics, 9, (Pergamon Press, Oxford; New York, 1980). (Cited on page 67.)
[375] Landau, L.D., Lifshitz, E.M. and Pitaevskii, L.P., Electrodynamics of continuous media, Course of Theoretical Physics, 8, (Pergamon Press, Oxford; New York, 1984), 2nd edition. (Cited on page 60.)
[376] Larsen, A.L., ”Cosmic strings and black holes”, arXiv e-print, (1996). [hep-th/9610063]. (Cited on page 48.)
[377] Laschkarew, W., ”Zur Theorie der Gravitation”, Z. Phys., 35, 473–476, (1926). [DOI]. (Cited on page 48.) · JFM 52.0919.06 · doi:10.1007/BF01385424
[378] Laughlin, R.B., ”Emergent relativity”, Int. J. Mod. Phys. A, 18, 831–854, (2003). [DOI], [gr-qc/0302028]. (Cited on page 44.) · Zbl 1044.83008 · doi:10.1142/S0217751X03014071
[379] Lemaître, G., ”L’univers en expansion”, Ann. Soc. Sci. Bruxelles, Ser. A, 53, 51–85, (1933). (Cited on page 28.) · JFM 59.1629.01
[380] Lemoine, M., Lubo, M., Martin, J. and Uzan, J.-P., ”Stress-energy tensor for trans-Planckian cosmology”, Phys. Rev. D, 65, 023510, 1–14, (2002). [hep-th/0109128]. (Cited on page 96.)
[381] Lemoine, M., Martin, J. and Uzan, J.-P., ”Trans-Planckian dark energy?”, Phys. Rev. D, 67, 103520, 1–13, (2003). [DOI], [hep-th/0212027]. (Cited on page 96.) · doi:10.1103/PhysRevD.67.103520
[382] Leonhardt, U., ”Space-time geometry of quantum dielectrics”, Phys. Rev. A, 62, 012111, 1–8, (2000). [DOI], [physics/0001064]. (Cited on page 43.) · doi:10.1146/annurev.physiol.62.1.1
[383] Leonhardt, U., ”Slow Light”, in Novello, M., Visser, M. and Volovik, G., eds., Artificial Black Holes, pp. 61–85, (World Scientific, Singapore; River Edge, NJ, 2002). [gr-qc/0108085], [Google Books]. (Cited on page 73.)
[384] Leonhardt, U., ”Quantum physics of simple optical instruments”, Rep. Prog. Phys., 66, 1207–1250, (2003). [DOI], [quant-ph/0305007]. (Cited on page 89.) · doi:10.1088/0034-4885/66/7/203
[385] Leonhardt, U., ”Optical Conformal Mapping”, Science, 312(5781), 1777–1780, (2006). [DOI]. (Cited on page 97.) · Zbl 1226.78001 · doi:10.1126/science.1126493
[386] Leonhardt, U., Kiss, T. and Öhberg, P., ”Intrinsic instability of sonic white holes”, arXiv e-print, (2002). [gr-qc/0211069]. (Cited on pages 43, 84, 92, and 94.)
[387] Leonhardt, U. and Philbin, T.G., ”Transformation Optics and the Geometry of Light”, Prog. Optics, 53, 69–152, (2009). [DOI], [ADS], [arXiv:0805.4778]. (Cited on page 97.) · doi:10.1016/S0079-6638(08)00202-3
[388] Leonhardt, U. and Philbin, T.G., ”Black Hole Lasers Revisited”, in Schützhold, R. and Unruh, B., eds., Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Lecture Notes in Physics, 718, pp. 229–246, (Springer, Berlin; New York, 2010). [arXiv:0803.0669 [gr-qc]]. (Cited on page 46.) · Zbl 1131.83011
[389] Leonhardt, U. and Piwnicki, P., ”Optics of nonuniformly moving media”, Phys. Rev. A, 60, 4301–4312, (1999). [DOI]. (Cited on page 42.) · doi:10.1103/PhysRevA.60.4301
[390] Leonhardt, U. and Piwnicki, P., ”Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity”, Phys. Rev. Lett., 84, 822–825, (2000). [DOI], [cond-mat/9906332]. (Cited on pages 43, 73, and 74.) · doi:10.1103/PhysRevLett.84.822
[391] Leonhardt, U. and Piwnicki, P., ”Reply to the comment on’ Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity’ by M. Visser”, Phys. Rev. Lett., 85, 5253, (2000). [DOI], [gr-qc/0003016]. (Cited on page 43.) · doi:10.1103/PhysRevLett.85.5253
[392] Lepe, S. and Saavedra, J., ”Quasinormal modes, superradiance and area spectrum for 2+1 acoustic black holes”, Phys. Lett. B, 617, 174–181, (2005). [DOI], [gr-qc/0410074]. (Cited on pages 44 and 95.) · Zbl 1247.83105 · doi:10.1016/j.physletb.2005.05.021
[393] Liberati, S., Quantum vacuum effects in gravitational fields: Theory and detectability, Ph.D. Thesis, (International School for Advanced Studies, Trieste, 2000). [gr-qc/0009050]. (Cited on page 48.)
[394] Liberati, S., ”Quantum gravity phenomenology via Lorentz violations”, in Bonora, L., Iengo, R., Klabucar, D., Pallua, S. and Picek, I., eds., School on Particle Physics, Gravity and Cosmology, 21 August–2 September 2006, Dubrovnik, Croatia, Proceedings of Science, P2GC, (SISSA, Trieste, 2007). [arXiv:0706.0142 [gr-qc]]. URL (accessed 13 December 2010): http://pos.sissa.it/contribution?id=PoS(P2GC)018. (Cited on page 46.)
[395] Liberati, S., Girelli, F. and Sindoni, L., ”Analogue Models for Emergent Gravity”, arXiv e-print, (2009). [arXiv:0909.3834 [gr-qc]]. (Cited on page 46.)
[396] Liberati, S. and Maccione, L., ”Lorentz Violation: Motivation and new constraints”, Annu. Rev. Nucl. Part. Sci., 59, 245–267, (2009). [DOI], [arXiv:0906.0681 [astro-ph.HE]]. (Cited on pages 46 and 110.) · doi:10.1146/annurev.nucl.010909.083640
[397] Liberati, S., Sindoni, L. and Sonego, S., ”Linking the trans-Planckian and the information loss problems in black hole physics”, Gen. Relativ. Gravit., 42, 1139–1152, (2009). [DOI], [arXiv:0904.0815 [gr-qc]]. (Cited on page 46.) · Zbl 1189.83051 · doi:10.1007/s10714-009-0899-2
[398] Liberati, S., Sonego, S. and Visser, M., ”Unexpectedly large surface gravities for acoustic horizons?”, Class. Quantum Grav., 17, 2903–2923, (2000). [DOI], [gr-qc/0003105]. (Cited on pages 25, 29, and 48.) · Zbl 0962.83018 · doi:10.1088/0264-9381/17/15/305
[399] Liberati, S., Sonego, S. and Visser, M., ”Scharnhorst effect at oblique incidence”, Phys. Rev. D, 63, 085003, 1–10, (2001). [DOI], [quant-ph/0010055]. (Cited on page 48.) · doi:10.1103/PhysRevD.63.085003
[400] Liberati, S., Sonego, S. and Visser, M., ”Faster-than-c signals, special relativity, and causality”, Ann. Phys. (N.Y.), 298, 167–185, (2002). [DOI], [gr-qc/0107091]. (Cited on pages 48 and 105.) · Zbl 0996.83002 · doi:10.1006/aphy.2002.6233
[401] Liberati, S., Visser, M. and Weinfurtner, S., ”Analogue quantum gravity phenomenology from a two-component Bose-Einstein condensate”, Class. Quantum Grav., 23, 3129–3154, (2006). [DOI], [arXiv:gr-qc/0510125]. (Cited on page 44.) · Zbl 1106.83012 · doi:10.1088/0264-9381/23/9/023
[402] Liberati, S., Visser, M. and Weinfurtner, S., ”Naturalness in emergent spacetime”, Phys. Rev. Lett., 96, 151301, (2006). [DOI], [arXiv:gr-qc/0512139]. (Cited on page 44.) · doi:10.1103/PhysRevLett.96.151301
[403] Lidsey, J.E., ”Cosmic dynamics of Bose-Einstein condensates”, Class. Quantum Grav., 21, 777–786, (2004). [DOI], [gr-qc/0307037]. (Cited on pages 30, 44, and 96.) · Zbl 1046.83043 · doi:10.1088/0264-9381/21/4/002
[404] Loebbert, F., ”The Weinberg-Witten theorem on massless particles: An Essay”, Ann. Phys. (Berlin), 17, 803–829, (2008). [DOI]. (Cited on page 106.) · Zbl 1152.81027 · doi:10.1002/andp.200810305
[405] Lubo, M., ”Quantum minimal length and trans-Planckian photons”, Phys. Rev. D, 61, 124009, 1–1, (2000). [DOI], [hep-th/9911191]. (Cited on page 48.) · doi:10.1103/PhysRevD.61.124009
[406] Lubo, M., ”Ultraviolet cut off, black hole-radiation equilibrium and big bang”, Phys. Rev. D, 68, 125005, (2003). [DOI], [hep-th/0306187]. (Cited on pages 48 and 96.) · doi:10.1103/PhysRevD.68.125005
[407] Lubo, M., ”Ultraviolet cutoff and bosonic dominance”, Phys. Rev. D, 68, 125004, 1–9, (2003). [DOI], [hep-th/0305216]. (Cited on page 48.)
[408] Maccione, L. and Liberati, S., ”GZK photon constraints on Planck scale Lorentz violation in QED”, J. Cosmol. Astropart. Phys., 2008(08), 027, (2008). [DOI], [arXiv:0805.2548 [astro-ph]]. (Cited on page 46.) · doi:10.1088/1475-7516/2008/08/027
[409] Maccione, L., Liberati, S., Celotti, A. and Kirk, J.G., ”New constraints on Planck-scale Lorentz Violation in QED from the Crab Nebula”, J. Cosmol. Astropart. Phys., 2007(10), 013, (2007). [DOI], [arXiv:0707.2673 [astro-ph]]. (Cited on page 46.) · doi:10.1088/1475-7516/2007/10/013
[410] Maccione, L., Liberati, S., Celotti, A., Kirk, J.G. and Ubertini, P., ”Gamma-ray polarization constraints on Planck scale violations of special relativity”, Phys. Rev. D, 78, 103003, (2008). [DOI], [arXiv:0809.0220 [astro-ph]]. (Cited on page 46.) · doi:10.1103/PhysRevD.78.103003
[411] Maccione, L., Taylor, A.M., Mattingly, D.M. and Liberati, S., ”Planck-scale Lorentz violation constrained by Ultra-High-Energy Cosmic Rays”, J. Cosmol. Astropart. Phys., 2009(04), 022, (2009). [DOI], [arXiv:0902.1756 [astro-ph.HE]]. (Cited on page 46.) · Zbl 1181.85056 · doi:10.1088/1475-7516/2009/04/022
[412] Macher, J. and Parentani, R., ”Black-hole radiation in Bose-Einstein condensates”, Phys. Rev. A, 80, 043601, (2009). [DOI], [arXiv:0905.3634 [cond-mat.quant-gas]]. (Cited on pages 46, 83, 85, and 87.) · doi:10.1103/PhysRevA.80.043601
[413] Macher, J. and Parentani, R., ”Black/White hole radiation from dispersive theories”, Phys. Rev. D, 79, 124008, (2009). [DOI], [arXiv:0903.2224 [hep-th]]. (Cited on pages 46, 83, 84, and 85.) · doi:10.1103/PhysRevD.79.124008
[414] Maia, C. and Schützhold, R., ”Quantum toy model for black-hole back-reaction”, Phys. Rev. D, 76, 101502, (2007). [DOI], [arXiv:0706.4010 [gr-qc]]. (Cited on page 45.) · doi:10.1103/PhysRevD.76.101502
[415] Mannarelli, M. and Manuel, C., ”Transport theory for cold relativistic superfluids from an analogue model of gravity”, Phys. Rev. D, 77, 103014, (2008). [DOI], [arXiv:0802.0321 [hep-ph]]. (Cited on page 46.) · doi:10.1103/PhysRevD.77.103014
[416] Mannarelli, M. and Manuel, C., ”Dissipative superfluids, from cold atoms to quark matter”, Acta Phys. Pol. B (Proc. Suppl.), 3, 621, (2010). [arXiv:0910.4326 [hep-ph]]. (Cited on page 46.)
[417] Mannarelli, M., Manuel, C. and Sa’d, Basil A., ”Mutual friction in a cold color-flavor-locked superfluid and r-mode instabilities in compact stars”, Phys. Rev. Lett., 101, 241101, (2008). [DOI], [arXiv:0807.3264 [hep-ph]]. (Cited on page 46.) · doi:10.1103/PhysRevLett.101.241101
[418] Manuel, C., ”Hydrodynamics of the CFL superfluid”, in 8th Conference Quark Confinement and the Hadron Spectrum, Proceedings of Science, (SISSA, Trieste, 2008). [arXiv:0811.4512 [hep-ph]]. URL (accessed 13 December 2010): http://pos.sissa.it/contribution?id=PoS(Confinement8)140. (Cited on page 45.)
[419] Manuel, C. and Llanes-Estrada, F.J., ”Bulk viscosity in a cold CFL superfluid”, J. Cosmol. Astropart. Phys., 2007(08), 001, (2007). [DOI], [arXiv:0705.3909 [hep-ph]]. (Cited on page 45.) · doi:10.1088/1475-7516/2007/08/001
[420] Marino, F., ”Acoustic black holes in a two-dimensional ’photon-fluid”’, Phys. Rev. A, 78, 063804, (2008). [DOI], [arXiv:0808.1624 [gr-qc]]. (Cited on page 46.) · doi:10.1103/PhysRevA.78.063804
[421] Markopoulou, F., ”Towards gravity from the quantum”, arXiv e-print, (2006). [arXiv:hep-th/0604120]. (Cited on page 45.)
[422] Martin, J., ”Inflationary cosmological perturbations of quantum-mechanical origin”, in Amelino-Camelia, G. and Kowalski-Glikman, J., eds., Planck Scale Effects in Astrophysics and Cosmology, 40th Karpacz Winter School of Theoretical Physics, Ladek Zdrój, Poland, 4–14 February 2004, Lecture Notes in Physics, 669, (Springer, Berlin; New York, 2004). [hep-th/0406011]. (Cited on page 48.)
[423] Martin, J. and Brandenberger, R.H., ”A Cosmological Window on Trans-Planckian Physics”, arXiv e-print, (2001). [astro-ph/0012031]. (Cited on page 96.)
[424] Martin, J. and Brandenberger, R.H., ”Trans-Planckian problem of inflationary cosmology”, Phys. Rev. D, 63, 123501, 1–16, (2001). [DOI], [hep-th/0005209]. (Cited on page 96.)
[425] Martin, J. and Brandenberger, R.H., ”Corley-Jacobson dispersion relation and trans-Planckian inflation”, Phys. Rev. D, 65, 103514, 1–5, (2002). [DOI], [hep-th/0201189]. (Cited on page 96.)
[426] Martin, J. and Brandenberger, R.H., ”Dependence of the spectra of fluctuations in inflationary cosmology on trans-Planckian physics”, Phys. Rev. D, 68, 063513, 1–16, (2003). [DOI], [hep-th/0305161]. (Cited on page 96.)
[427] Martín-Martínez, E., Garay, L.J. and Leon, J., ”Quantum entanglement produced in the formation of a black hole”, Phys. Rev. D, 82, 064028, (2010). [arXiv:1007.2858 [quant-ph]]. (Cited on page 47.) · doi:10.1103/PhysRevD.82.064028
[428] Massar, S., ”The semiclassical back reaction to black hole evaporation”, Phys. Rev. D, 52, 5857–5864, (1995). [DOI], [gr-qc/9411039]. (Cited on page 89.) · doi:10.1103/PhysRevD.52.5857
[429] Massar, S. and Parentani, R., ”From vacuum fluctuations to radiation: Accelerated detectors and black holes”, Phys. Rev. D, 54, 7426–7443, (1996). [gr-qc/9502024]. (Cited on page 89.) · doi:10.1103/PhysRevD.54.7426
[430] Massar, S. and Parentani, R., ”From vacuum fluctuations to radiation. II. Black holes”, Phys. Rev. D, 54, 7444–7458, (1996). [DOI], [gr-qc/9502024]. (Cited on page 89.) · doi:10.1103/PhysRevD.54.7444
[431] Massar, S. and Parentani, R., ”How the change in horizon area drives black hole evaporation”, Nucl. Phys. B, 575, 333–356, (2000). [DOI], [gr-qc/9903027]. (Cited on pages 89 and 102.) · Zbl 0992.83034 · doi:10.1016/S0550-3213(00)00067-5
[432] Matarrese, S., ”On the classical and quantum irrotational motions of a relativistic perfect fluid: I. Classical Theory”, Proc. R. Soc. London, Ser. A, 401, 53–66, (1985). (Cited on pages 41 and 42.) · Zbl 0575.76128 · doi:10.1098/rspa.1985.0087
[433] Matarrese, S., ”Perturbations of an irrotational perfect fluid”, in Fabbri, R. and Modugno, M., eds., Atti del VI Convegno Nazionale di Relatività Generale e Fisica della Gravitazione, Proceedings of the 4th Italian Conference on General Relativity and the Physics of Gravitation, Florence, Italy, 10–13 October 1984, pp. 283–287, (Pitagora Editrice, Bologna, 1986). (Cited on pages 41 and 42.)
[434] Matarrese, S., ”Phonons in a relativistic perfect fluid”, in Ruffini, R., ed., The Fourth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held at the University of Rome ’La Sapienza’, 17–21 June, 1985, pp. 1591–1595, (North-Holland; Elsevier, Amsterdam; New York, 1986). (Cited on pages 41 and 42.)
[435] Mattingly, D., ”Modern Tests of Lorentz Invariance”, Living Rev. Relativity, 8, lrr-2005-5, (2005). URL (accessed 31 May 2005): http://www.livingreviews.org/lrr-2005-5. (Cited on pages 45 and 110.) · Zbl 1255.83059
[436] Mattingly, D., ”Causal sets and conservation laws in tests of Lorentz symmetry”, Phys. Rev. D, 77, 125021, (2008). [DOI], [arXiv:0709.0539 [gr-qc]]. (Cited on page 48.) · doi:10.1103/PhysRevD.77.125021
[437] Mattingly, D.M., Maccione, L., Galaverni, M., Liberati, S. and Sigl, G., ”Possible cosmo-genic neutrino constraints on Planck-scale Lorentz violation”, J. Cosmol. Astropart. Phys., 2010(02), 007, (2010). [DOI], [arXiv:0911.0521 [hep-ph]]. (Cited on page 46.) · doi:10.1088/1475-7516/2010/02/007
[438] Mayoral, C., Fabbri, A. and Rinaldi, M., ”Step-like discontinuities in Bose-Einstein condensates and Hawking radiation: dispersion effects”, arXiv e-print, (2010). [arXiv:1008.2125 [gr-qc]]. (Cited on page 47.)
[439] McCall, M.W., Favaro, A., Kinsler, P. and Boardman, A., ”A spacetime cloak, or a history editor”, J. Opt., 13, 024003, (2011). [DOI]. (Cited on page 97.) · doi:10.1088/2040-8978/13/2/024003
[440] Mersini, L., ”Dark energy from the trans-Planckian regime”, in Khalil, S., Shafi, Q. and Tallat, H., eds., International Conference on High Energy Physics, January 9–14, 2001, Cairo, Egypt, pp. 289–294, (Rinton Press, Princeton, NJ, 2001). [hep-ph/0106134]. (Cited on pages 43 and 48.)
[441] Mersini, L., Bastero-Gil, M. and Kanti, P., ”Relic dark energy from trans-Planckian regime”, Phys. Rev. D, 64, 043508, 1–9, (2001). [DOI], [hep-ph/0101210]. (Cited on page 43.) · doi:10.1103/PhysRevD.64.043508
[442] Milgrom, M., ”Massive particles in acoustic space-times emergent inertia and passive gravity”, Phys. Rev. D, 73, 084005, (2006). [DOI], [arXiv:gr-qc/0601034]. (Cited on page 48.) · doi:10.1103/PhysRevD.73.084005
[443] Milne-Thomson, L.M., Theoretical Hydrodynamics, (Macmillan, London, New York, 1968), 5th edition. (Cited on pages 12 and 13.)
[444] Minic, D. and Heremans, J.J., ”High Temperature Superconductivity and Effective Gravity”, Phys. Rev. B, 78, 214501, (2008). [DOI], [arXiv:0804.2880 [hep-th]]. (Cited on page 46.) · doi:10.1103/PhysRevB.78.214501
[445] Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973). (Cited on pages 15, 18, 29, and 33.)
[446] Møller, C., The Theory of Relativity, (Clarendon, Oxford, 1972), 2nd edition. (Cited on page 15.) · Zbl 0047.20602
[447] Moncrief, V., ”Gravitational perturbations of spherically symmetric systems. I. The exterior problem”, Ann. Phys. (N.Y.), 88, 323–342, (1974). [DOI], [ADS]. (Cited on page 90.) · doi:10.1016/0003-4916(74)90173-0
[448] Moncrief, V., ”Stability of stationary, spherical accretion onto a Schwarzschild black hole”, Astrophys. J., 235, 1038–1046, (1980). [DOI], [ADS]. (Cited on pages 16, 41, 42, 50, and 51.) · doi:10.1086/157707
[449] Nachman, A.I., ”Reconstructions from boundary measurements”, Ann. Math., 128, 531–576, (1988). [DOI]. (Cited on page 97.) · Zbl 0675.35084 · doi:10.2307/1971435
[450] Naddeo, A. and Scelza, G., ”Wave equation of the scalar field and superfluids”, Mod. Phys. Lett. A, 24, 3249–3256, (2009). [DOI], [arXiv:0910.0794 [cond-mat.other]]. (Cited on page 46.) · Zbl 1184.83069 · doi:10.1142/S0217732309032162
[451] Naddeo, A. and Scelza, G., ”A note on the analogy between superfluids and cosmology”, Mod. Phys. Lett. B, 24, 513–520, (2010). [DOI], [arXiv:0910.0790 [cond-mat.other]]. (Cited on page 46.) · Zbl 1189.82130 · doi:10.1142/S0217984910022573
[452] Nakano, H., Kurita, Y., Ogawa, K. and Yoo, C.-M., ”Quasinormal ringing for acoustic black holes at low temperature”, Phys. Rev. D, 71, 084006, 1–7, (2005). [DOI], [gr-qc/0411041]. (Cited on page 44.)
[453] Nandi, K.K. and Xu, D.H., ”Unruh model for the Einstein-Rosen charge: Squealing worm-holes?”, arXiv e-print, (2004). [gr-qc/0410052]. (Cited on page 48.)
[454] Nandi, K.K., Zhang, Y.-Z., Alsing, P.M., Evans, J.C. and Bhadra, A., ”Analogue of the Fizeau effect in an effective optical medium”, Phys. Rev. D, 67, 025002, 1–11, (2003). [DOI], [gr-qc/0208035]. (Cited on page 48.) · doi:10.1103/PhysRevD.67.025002
[455] Nandi, K.K., Zhang, Y.-Z. and Cai, R.-G., ”Acoustic Wormholes”, arXiv e-print, (2004). [gr-qc/0409085]. (Cited on page 48.)
[456] Nielsen, A.B. and Visser, M., ”Production and decay of evolving horizons”, Class. Quantum Grav., 23, 4637–4658, (2006). [DOI], [arXiv:gr-qc/0510083]. (Cited on page 48.) · Zbl 1148.83012 · doi:10.1088/0264-9381/23/14/006
[457] Niemeyer, J.C., ”Inflation with a Planck-scale frequency cutoff”, Phys. Rev. D, 63, 123502, 1–7, (2001). [DOI], [astro-ph/0005533]. (Cited on page 43.) · doi:10.1103/PhysRevD.63.123502
[458] Niemeyer, J.C., ”Cosmological consequences of short distance physics”, arXiv e-print, (2002). [astro-ph/0201511]. (Cited on page 96.)
[459] Niemeyer, J.C. and Parentani, R., ”Trans-Planckian dispersion and scale invariance of inflationary perturbations”, Phys. Rev. D, 64, 101301, 1–4, (2001). [DOI], [astro-ph/0101451]. (Cited on pages 43 and 96.) · doi:10.1103/PhysRevD.64.101301
[460] Niemeyer, J.C., Parentani, R. and Campo, D., ”Minimal modifications of the primordial power spectrum from an adiabatic short distance cutoff”, Phys. Rev. D, 66, 083510, (2002). [DOI], [arXiv:hep-th/0206149]. (Cited on pages 43 and 96.) · doi:10.1103/PhysRevD.66.083510
[461] Nikolić, H., ”Time in quantum gravity by weakening the Hamiltonian constraint”, arXiv e-print, (2003). [gr-qc/0312063]. (Cited on page 89.)
[462] Nikolić, H., ”Black holes radiate but do not evaporate”, Int. J. Mod. Phys. D, 14, 2257–2261, (2005). [DOI], [hep-th/0402145]. (Cited on page 89.) · Zbl 1102.83323 · doi:10.1142/S0218271805007796
[463] Nikolić, H., ”Would Bohr be born if Bohm were born before Born?”, Am. J. Phys., 76, 143–146, (2008). [DOI], [arXiv:physics/0702069]. (Cited on page 45.) · doi:10.1119/1.2805241
[464] Novello, M., ”Effective geometry in nonlinear electrodynamics”, Int. J. Mod. Phys. A, 17, 4187–4196, (2002). [DOI]. (Cited on pages 43 and 58.) · Zbl 1012.78004 · doi:10.1142/S0217751X02013216
[465] Novello, M., De Lorenci, V.A., Salim, J.M. and Klippert, R., ”Geometrical aspects of light propagation in nonlinear electrodynamics”, Phys. Rev. D, 61, 045001, 1–10, (2000). [DOI], [gr-qc/9911085]. (Cited on page 58.)
[466] Novello, M. and Perez Bergliaffa, S.E., ”Effective Geometry”, in Novello, M. and Perez Bergliaffa, S.E., eds., Cosmology and Gravitation, Xth Brazilian School of Cosmology and Gravitation, 25th Anniversary (1977–2002), Mangaratiba, Rio de Janeiro, Brazil, 29 July–9 August 2002, AIP Conference Proceedings, 668, pp. 288–300, (American Institute of Physics, Melville, NY, 2003). [gr-qc/0302052]. (Cited on pages 44 and 58.)
[467] Novello, M., Perez Bergliaffa, S.E. and Salim, J.M., ”Nonlinear electrodynamics and the acceleration of the Universe”, Phys. Rev. D, 69, 127301, 1–4, (2004). [DOI], [astro-ph/0312093]. (Cited on pages 44 and 58.) · doi:10.1103/PhysRevD.69.127301
[468] Novello, M., Perez Bergliaffa, S.E., Salim, J.M., De Lorenci, V.A. and Klippert, R., ”Analog black holes in flowing dielectrics”, Class. Quantum Grav., 20, 859–871, (2003). [DOI], [gr-qc/0201061]. (Cited on pages 43 and 58.) · Zbl 1028.83027 · doi:10.1088/0264-9381/20/5/306
[469] Novello, M. and Salim, J.M., ”Effective electromagnetic geometry”, Phys. Rev. D, 63, 083511, 1–4, (2001). [DOI]. (Cited on page 58.)
[470] Novello, M., Visser, M. and Volovik, G., eds., Artificial Black Holes, (World Scientific, Singapore; River Edge, NJ, 2002). (Cited on pages 9, 11, 43, 74, 77, and 111.)
[471] Obadia, N. and Parentani, R., ”Notes on moving mirrors”, Phys. Rev. D, 64, 044019, 1–17, (2001). [DOI], [gr-qc/0103061]. (Cited on page 48.) · doi:10.1103/PhysRevD.64.044019
[472] Obadia, N. and Parentani, R., ”Uniformly accelerated mirrors. II: Quantum correlations”, Phys. Rev. D, 67, 024022, 1–18, (2003). [DOI], [gr-qc/0209057]. (Cited on page 48.)
[473] Obukhov, Y.N., ”Black hole hydrodynamics”, arXiv e-print, (2003). [gr-qc/0309114]. (Cited on page 47.)
[474] Obukhov, Y.N. and Hehl, F.W., ”Spacetime metric from linear electrodynamics”, Phys. Lett. B, 458, 466–470, (1999). [DOI], [gr-qc/9904067]. (Cited on page 58.) · Zbl 0962.78003 · doi:10.1016/S0370-2693(99)00643-7
[475] Okninski, A., ”Towards a self-consistent model of analogue gravity”, arXiv e-print, (2005). [arXiv:gr-qc/0509045]. (Cited on page 48.)
[476] Okuzumi, S. and Sakagami, Masa-aki, ”Quasinormal ringing of acoustic black holes in Laval nozzles: Numerical simulations”, Phys. Rev. D, 76, 084027, (2007). [DOI], [arXiv:gr-qc/0703070]. (Cited on page 100.) · doi:10.1103/PhysRevD.76.084027
[477] Oliveira, E.S., Dolan, S.R. and Crispino, L.C.B., ”Absorption of planar waves in a draining bathtub”, Phys. Rev. D, 81, 124013, (2010). [DOI]. (Cited on page 47.) · doi:10.1103/PhysRevD.81.124013
[478] Oppenheim, J., ”Thermodynamics with long-range interactions: From Ising models to black holes”, Phys. Rev. E, 68, 016108, 1–17, (2003). [DOI], [gr-qc/0212066]. (Cited on page 89.) · doi:10.1103/PhysRevE.68.016108
[479] Oron, O. and Horwitz, L.P., ”Eikonal approximation to 5D wave equations as geodesic motion in a curved 4D spacetime”, Gen. Relativ. Gravit., 37, 491–506, (2005). [DOI], [hep-ph/0205018]. (Cited on page 48.) · Zbl 1075.83008 · doi:10.1007/s10714-005-0038-7
[480] Padmanabhan, T., ”Gravity and the thermodynamics of horizons”, Phys. Rep., 406, 49–125, (2003). [gr-qc/0311036]. (Cited on page 89.) · doi:10.1016/j.physrep.2004.10.003
[481] Padmanabhan, T., ”Entropy of Horizons, Complex Paths and Quantum Tunneling”, Mod. Phys. Lett. A, 19, 2637–2643, (2004). [DOI], [gr-qc/0405072]. (Cited on page 89.) · Zbl 1072.83013 · doi:10.1142/S0217732304015257
[482] Padmanabhan, T., ”Surface Density of Spacetime Degrees of Freedom from Equipartition Law in theories of Gravity”, Phys. Rev. D, 81, 124040, (2010). [DOI], [arXiv:1003.5665 [gr-qc]]. (Cited on page 47.) · doi:10.1103/PhysRevD.81.124040
[483] Padmanabhan, T., ”Thermodynamical Aspects of Gravity: New insights”, Rep. Prog. Phys., 73, 046901, (2010). [DOI], [arXiv:0911.5004 [gr-qc]]. (Cited on page 47.) · doi:10.1088/0034-4885/73/4/046901
[484] Painlevé, P., ”La mécanique classique et la theorie de la relativité”, C. R. Acad. Sci., 173, 677–680, (1921). (Cited on page 28.) · JFM 48.0997.03
[485] Parentani, R., ”The Recoils of the accelerated detector and the decoherence of its fluxes”, Nucl. Phys. B, 454, 227–249, (1995). [DOI], [gr-qc/9502030]. (Cited on page 48.) · doi:10.1016/0550-3213(95)00452-X
[486] Parentani, R., ”The Recoils of a Dynamical Mirror and the Decoherence of its Fluxes”, Nucl. Phys. B, 465, 175–214, (1996). [DOI], [hep-th/9509104]. (Cited on page 48.) · Zbl 01904147 · doi:10.1016/0550-3213(96)00041-7
[487] Parentani, R., ”Time dependent perturbation theory in quantum cosmology”, Nucl. Phys. B, 492, 501–525, (1997). [gr-qc/9610045]. (Cited on pages 48 and 96.) · Zbl 0939.83018 · doi:10.1016/S0550-3213(97)80043-0
[488] Parentani, R., ”The validity of the background field approximation”, in Burko, L.M. and Ori, A., eds., Internal Structure of Black Holes and Space Time Singularities, June 29–July 3, 1997, Haifa, Israel, Annals of the Israel Physical Society, 13, (Institute of Physics Publishing, Bristol; Philadelphia, 1997). [gr-qc/9710059]. (Cited on page 48.) · Zbl 0910.58042
[489] Parentani, R., ”Hawking radiation from Feynman diagrams”, Phys. Rev. D, 61, 027501, 1–4, (2000). [gr-qc/9904024]. (Cited on page 89.)
[490] Parentani, R., ”Quantum metric fluctuations and Hawking radiation”, Phys. Rev. D, 63, 041503, 1–4, (2001). [DOI], [gr-qc/0009011]. (Cited on pages 82 and 103.) · Zbl 0987.83017 · doi:10.1103/PhysRevD.63.041503
[491] Parentani, R., ”Beyond the semi-classical description of black hole evaporation”, Int. J. Theor. Phys., 41, 2175–2200, (2002). [DOI], [arXiv:0704.2563 [hep-th]]. (Cited on page 45.) · Zbl 1014.83020 · doi:10.1023/A:1021133126804
[492] Parentani, R., ”What did we learn from studying acoustic black holes?”, Int. J. Mod. Phys. A, 17, 2721–2726, (2002). [DOI], [gr-qc/0204079]. (Cited on page 43.) · doi:10.1142/S0217751X02011679
[493] Parentani, R., ”The inflationary paradigm: predictions for CMB”, C. R. Physique, 4, 935–943, (2003). [astro-ph/0404022]. (Cited on page 48.) · doi:10.1016/S1631-0705(03)00100-2
[494] Parentani, R., ”Constructing QFT’s wherein Lorentz Invariance is broken by dissipative effects in the UV”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11–15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). [arXiv:0709.3943 [hep-th]]. URL (accessed 13 December 2010): http://pos.sissa.it/contribution?id=PoS(QG-Ph)039. (Cited on page 45.)
[495] Parentani, R., ”Confronting the trans-Planckian question of inflationary cosmology with dissipative effects”, Class. Quantum Grav., 25, 154015, (2008). [DOI], [arXiv:0710.4664 [hep-th]]. (Cited on page 45.) · Zbl 1145.83369 · doi:10.1088/0264-9381/25/15/154015
[496] Parentani, R., ”From vacuum fluctuations across an event horizon to long distance correlations”, Phys. Rev. D, 82, 025008, (2010). [DOI], [arXiv:1003.3625 [gr-qc]]. (Cited on pages 47 and 87.) · doi:10.1103/PhysRevD.82.025008
[497] Pashaev, O.K. and Lee, J.-H., ”Resonance Solitons as Black Holes in Madelung Fluid”, Mod. Phys. Lett. A, 17, 1601–1619, (2002). [DOI], [hep-th/9810139]. (Cited on page 48.) · Zbl 1083.81515 · doi:10.1142/S0217732302007995
[498] Pendry, J.B., Schurig, D. and Smith, D.R., ”Controlling Electromagnetic Fields”, Science, 312(5781), 1780–1782, (2006). [DOI]. (Cited on page 97.) · Zbl 1226.78003 · doi:10.1126/science.1125907
[499] Penrose, R., ”Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento, 1, 252–276, (1969). [DOI], [ADS]. (Cited on page 95.)
[500] Pereira, E.R. and Moraees, F., ”Flowing Liquid Crystal Simulating the Schwarzschild Metric”, arXiv e-print, (2009). [arXiv:0910.1314 [gr-qc]]. (Cited on page 46.)
[501] Perez Bergliaffa, S.E., ”Effective geometry in Astrophysics”, Int. J. Mod. Phys. D, 13, 1469–1476, (2004). [DOI], [astro-ph/0401577]. (Cited on page 44.) · Zbl 1087.83512 · doi:10.1142/S0218271804005705
[502] Perez Bergliaffa, S.E., Hibberd, K., Stone, M. and Visser, M., ”Wave Equation for Sound in Fluids with Vorticity”, Physica D, 191, 121–136, (2001). [cond-mat/0106255]. (Cited on pages 36 and 43.) · Zbl 1076.76593 · doi:10.1016/j.physd.2003.11.007
[503] Pham, Q.M., ”Sur les équations de l’electromagne dans la materie”, C. R. Hebd. Seanc. Acad. Sci., 242, 465–467, (1956). (Cited on page 40.) · Zbl 0074.22305
[504] Philbin, T.G., Kuklewicz, C., Robertson, S., Hill, S., Konig, F. and Leonhardt, U., ”Fiber-optical analogue of the event horizon: Appendices”, arXiv e-print, (2007). [arXiv:0711.4797 [gr-qc]]. (Cited on pages 45, 75, 87, 100, and 101.)
[505] Philbin, T.G., Kuklewicz, C., Robertson, S., Hill, S., König, F. and Leonhardt, U., ”Fiber-optical analogue of the event horizon”, Science, 319, 1367–1370, (2008). [DOI], [arXiv:0711.4796 [gr-qc]]. (Cited on pages 45, 75, 87, 100, and 101.) · doi:10.1126/science.1153625
[506] Philips, D.F., Fleischhauer, A., Mair, A. and Walsworth, R.L., ”Storage of Light in Atomic Vapor”, Phys. Rev. Lett., 86, 783–786, (2001). [DOI]. (Cited on page 72.) · doi:10.1103/PhysRevLett.86.783
[507] Piazza, F., ”Glimmers of a pre-geometric perspective”, Found. Phys., 40, 239–266, (2010). [DOI], [arXiv:hep-th/0506124]. (Cited on page 110.) · Zbl 1187.83034 · doi:10.1007/s10701-009-9387-5
[508] Pines, D., The Many-Body Problem: A Lecture Note and Reprint Volume, Frontiers in Physics, 6, (W.A. Benjamin, New York, 1962), 2nd edition. (Cited on page 67.) · Zbl 0106.21903
[509] Piwnicki, P., ”Geometrical approach to light in inhomogeneous media”, Int. J. Mod. Phys. A, 17, 1543–1558, (2002). [DOI], [gr-qc/0201007]. (Cited on page 43.) · Zbl 1001.78006 · doi:10.1142/S0217751X02009746
[510] Plebański, J., ”Electromagnetic waves in gravitational fields”, Phys. Rev., 118, 1396–1408, (1960). [DOI]. (Cited on page 40.) · Zbl 0092.45102 · doi:10.1103/PhysRev.118.1396
[511] Plebański, J., Lectures on Nonlinear Electrodynamics, (Nordita, Copenhagen, 1970). (Cited on page 40.)
[512] Prain, A., Fagnocchi, S. and Liberati, S., ”Analogue cosmological particle creation: Quantum correlations in expanding Bose-Einstein condensates”, Phys. Rev. D, 82, 105018, (2010). [DOI], [arXiv:1009.0647 [gr-qc]]. (Cited on pages 47, 87, and 88.) · doi:10.1103/PhysRevD.82.105018
[513] Press, W.H. and Teukolsky, S.A., ”Floating Orbits, Superradiant Scattering and the Black-Hole Bomb”, Nature, 238, 211–212, (1972). [DOI]. (Cited on page 95.) · doi:10.1038/238211a0
[514] Radu, E., ”On the Euclidean approach to quantum field theory in Gödel space-time”, Phys. Lett. A, 247, 207–210, (1998). [DOI]. (Cited on page 48.) · Zbl 0941.81050 · doi:10.1016/S0375-9601(98)00566-0
[515] Raval, A., Hu, B.L. and Koks, D., ”Near-thermal radiation in detectors, mirrors and black holes: A stochastic approach”, Phys. Rev. D, 55, 4795–4812, (1997). [DOI], [gr-qc/9606074]. (Cited on page 48.) · doi:10.1103/PhysRevD.55.4795
[516] Ray, A.K., ”Linearized perturbation on stationary inflow solutions in an inviscid and thin accretion disc”, Mon. Not. R. Astron. Soc., 344, 83–88, (2003). [DOI], [astro-ph/0212515]. (Cited on page 48.) · doi:10.1046/j.1365-8711.2003.06796.x
[517] Ray, A.K. and Bhattacharjee, J.K., ”Dynamical Systems Approach to an Inviscid and Thin Accretion Disc”, arXiv e-print, (2003). [astro-ph/0307447]. (Cited on page 48.)
[518] Ray, A.K. and Bhattacharjee, J.K., ”Evolution of transonicity in an accretion disc”, Class. Quantum Grav., 24, 1479, (2007). [DOI], [arXiv:astro-ph/0703251]. (Cited on page 48.) · Zbl 1110.83322 · doi:10.1088/0264-9381/24/6/007
[519] Ray, A.K. and Bhattacharjee, J.K., ”Standing and travelling waves in the shallow-water circular hydraulic jump”, Phys. Lett. A, 371, 241–248, (2007). [DOI], [ADS], [arXiv:cond-mat/0409315]. (Cited on page 45.) · doi:10.1016/j.physleta.2007.07.073
[520] Recati, A., Pavloff, N. and Carusotto, I., ”Bogoliubov theory of acoustic Hawking radiation in Bose-Einstein condensates”, Phys. Rev. A, 80, 043603, (2009). [DOI], [arXiv:0907.4305 [cond-mat.quant-gas]]. (Cited on pages 46 and 87.) · doi:10.1103/PhysRevA.80.043603
[521] Regge, T. and Wheeler, J.A., ”Stability of a Schwarzschild Singularity”, Phys. Rev., 108, 1063–1069, (1957). [DOI], [ADS]. (Cited on page 90.) · Zbl 0079.41902 · doi:10.1103/PhysRev.108.1063
[522] Reznik, B., ”Trans-Planckian tail in a theory with a cutoff”, Phys. Rev. D, 55, 2152–2158, (1997). [DOI], [gr-qc/9606083]. (Cited on pages 42, 82, and 89.) · doi:10.1103/PhysRevD.55.2152
[523] Reznik, B., ”Origin of the thermal radiation in a solid-state analogue of a black hole”, Phys. Rev. D, 62, 044044, 1–7, (2000). [DOI], [gr-qc/9703076]. (Cited on pages 22, 25, 42, 56, and 89.) · doi:10.1103/PhysRevD.62.044044
[524] Richartz, M., Weinfurtner, S., Penner, A.J. and Unruh, W.G., ”Generalized superradiant scattering”, Phys. Rev. D, 80, 124016, (2009). [DOI], [arXiv:0909.2317 [gr-qc]]. (Cited on pages 46 and 95.) · doi:10.1103/PhysRevD.80.124016
[525] Rosquist, K., ”Letter: A Moving Medium Simulation of Schwarzschild Black Hole Optics”, Gen. Relativ. Gravit., 36, 1977–1982, (2004). [DOI], [gr-qc/0309104]. (Cited on page 47.) · Zbl 1059.83024 · doi:10.1023/B:GERG.0000036055.82140.06
[526] Rosu, H.C., ”Towards measuring Hawking-like effects in the laboratory. I”, unpublished, (1989). Online version (accessed 31 May 2005): http://www.slac.stanford.edu/spires/find/hep/www?key=2056828. (Cited on page 89.)
[527] Rosu, H.C., ”On the circular vacuum noise in electron storage rings”, Nuovo Cimento B, 109, 423–430, (1994). [DOI], [physics/9711015]. (Cited on page 48.) · doi:10.1007/BF02722522
[528] Rosu, H.C., ”Superoscillations and trans-Planckian frequencies”, Nuovo Cimento B, 112, 131–132, (1997). [gr-qc/9606070]. (Cited on pages 48 and 82.)
[529] Rosu, H.C., ”Classical and quantum inertia: A matter of principles”, Grav. and Cosmol., 5, 81–91, (1999). [gr-qc/9412012]. (Cited on page 48.) · Zbl 0974.70005
[530] Rosu, H.C., ”Relativistic quantum field inertia and vacuum field noise spectra: By quest of the lost universality to high energy radiometric standards”, Int. J. Theor. Phys., 39, 285–295, (2000). [gr-qc/9905049]. (Cited on page 89.) · Zbl 0964.83044 · doi:10.1023/A:1003680124679
[531] Rousseaux, G., Maïssa, P., Mathis, C., Coullet, P., Philbin, T.G. and Leonhardt, U., ”Horizon effects with surface waves on moving water”, New J. Phys., 12, 095018, (2010). [DOI], [arXiv:1004.5546 [gr-qc]]. URL (accessed 24 March 2011): http://stacks.iop.org/1367-2630/12/i=9/a=095018. (Cited on pages 42, 47, 53, and 54.) · doi:10.1088/1367-2630/12/9/095018
[532] Rousseaux, G., Mathis, C., Maïssa, P., Philbin, T.G. and Leonhardt, U., ”Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect?”, New J. Phys., 10, 053015, (2008). [DOI], [arXiv:0711.4767 [gr-qc]]. URL (accessed 20 March 2011): http://stacks.iop.org/1367-2630/10/i=5/a=053015. (Cited on pages 42, 45, 53, 54, 87, 99, and 111.) · doi:10.1088/1367-2630/10/5/053015
[533] Rovelli, C., ”Loop quantum gravity”, Phys. World, 16, 37–41, (November 2003). (Cited on page 110.) · doi:10.1088/2058-7058/16/11/36
[534] Rovelli, C., Quantum Gravity, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2004). [Google Books]. (Cited on page 110.)
[535] Rovelli, C. and Smolin, L., ”Discreteness of area and volume in quantum gravity”, Nucl. Phys. B, 442, 593–619, (1995). [DOI], [gr-qc/9411005]. (Cited on page 48.) · Zbl 0925.83013 · doi:10.1016/0550-3213(95)00150-Q
[536] Russo, J.G., ”Model of black hole evolution”, Phys. Rev. D, 55, 871–877, (1997). [DOI], [hep-th/9602124]. (Cited on page 89.) · Zbl 0942.83037 · doi:10.1103/PhysRevD.55.871
[537] Saavedra, J., ”Quasinormal modes of Unruh’s acoustic black hole”, Mod. Phys. Lett. A, 21, 1601–1608, (2006). [DOI], [arXiv:gr-qc/0508040]. (Cited on page 44.) · Zbl 1138.83340 · doi:10.1142/S0217732306019712
[538] Saida, H. and Sakagami, M., ”Black hole radiation with high frequency dispersion”, Phys. Rev. D, 61, 084023, 1–8, (2000). [DOI], [gr-qc/9905034]. (Cited on page 83.) · doi:10.1103/PhysRevD.61.084023
[539] Sakagami, M. and Ohashi, A., ”Hawking Radiation in Laboratories”, Prog. Theor. Phys., 107, 1267–1272, (2002). [DOI], [gr-qc/0108072]. (Cited on pages 43 and 100.) · Zbl 0996.83035 · doi:10.1143/PTP.107.1267
[540] Sakharov, A.D., ”Vacuum quantum fluctuations in curved space and the theory of gravitation”, Sov. Phys. Dokl., 12, 1040–1041, (1968). (Cited on pages 106 and 108.)
[541] Salehi, H., ”Evaporating Black Holes And An Entropic Scale-Hierarchy”, arXiv e-print, (1994). [gr-qc/9409023]. (Cited on page 89.)
[542] Salehi, H., ”Evaporating black holes and long range scaling”, Gen. Relativ. Gravit., 35, 1679–1690, (2003). [DOI], [hep-th/0302178]. (Cited on page 89.) · Zbl 1040.83027 · doi:10.1023/A:1025787219797
[543] Samuel, J. and Sinha, S., ”Surface tension and the cosmological constant”, Phys. Rev. Lett., 97, 161302, (2006). [DOI], [arXiv:cond-mat/0603804]. (Cited on page 45.) · doi:10.1103/PhysRevLett.97.161302
[544] Saul, L.A., ”The Dynamic Space of General Relativity in Second Atomization”, in Reimer, A., ed., General Relativity Research Trends, Horizons in World Physics, 249, pp. 153–172, (Nova Science, New York, 2005). [gr-qc/0405132]. (Cited on page 48.)
[545] Schmelzer, I., ”General Ether Theory”, arXiv e-print, (2000). [gr-qc/0001101]. (Cited on page 48.)
[546] Schmelzer, I., ”A metric theory of gravity with condensed matter interpretation”, arXiv e-print, (2000). [gr-qc/0001096]. (Cited on page 48.)
[547] Schmelzer, I., ”Derivation of the Einstein Equivalence Principle in a Class of Condensed Matter Theories”, arXiv e-print, (2001). [gr-qc/0104013]. (Cited on page 48.)
[548] Schmelzer, I., ”A generalization of the Lorentz ether to gravity with general-relativistic limit”, arXiv e-print, (2002). [gr-qc/0205035]. (Cited on page 48.)
[549] Schützhold, R., ”On the Hawking effect”, Phys. Rev. D, 64, 024029, 1–14, (2001). [DOI], [gr-qc/0011047]. (Cited on page 89.) · doi:10.1103/PhysRevD.64.024029
[550] Schützhold, R., ”Particle definition in the presence of black holes”, Phys. Rev. D, 63, 024014, (2001). [gr-qc/0003020]. (Cited on page 89.) · doi:10.1103/PhysRevD.63.024014
[551] Schützhold, R., ”Dynamical zero-temperature phase transitions and cosmic inflation / deflation”, Phys. Rev. Lett., 95, 135703, (2005). [DOI], [arXiv:quant-ph/0505196]. (Cited on page 44.) · doi:10.1103/PhysRevLett.95.135703
[552] Schützhold, R., ”Emergent horizons in the laboratory”, Class. Quantum Grav., 25, 114011, (2008). [DOI], [arXiv:1004.2586 [gr-qc]]. (Cited on page 47.) · Zbl 1144.83323 · doi:10.1088/0264-9381/25/11/114011
[553] Schützhold, R., ”’Exotic’ quantum effects in the laboratory?”, Philos. Trans. R. Soc. London, Ser. A, 36, 2895, (2008). [arXiv:1004.2590 [quant-ph]]. (Cited on page 46.) · Zbl 1153.81543 · doi:10.1098/rsta.2008.0093
[554] Schützhold, R., ”Recreating Fundamental Effects in the Laboratory?”, Adv. Sci. Lett., 2, 121, (2009). [arXiv:1004.2394 [gr-qc]]. (Cited on page 47.) · doi:10.1166/asl.2009.1020
[555] Schützhold, R., ”Fundamental Quantum Effects from a Quantum-Optics Perspective”, arXiv e-print, (2010). [arXiv:1004.2397 [quant-ph]]. (Cited on page 47.)
[556] Schützhold, R. and Maia, C., ”Black-hole back-reaction – a toy model”, J. Phys. A: Math. Gen., 41, 164065, (2008). [DOI]. (Cited on page 46.) · Zbl 1140.83383 · doi:10.1088/1751-8113/41/16/164065
[557] Schützhold, R., Plunien, G. and Soff, G., ”Dielectric Black Hole Analogs”, Phys. Rev. Lett., 88, 061101, 1–4, (2002). [DOI], [quant-ph/0104121]. (Cited on page 43.) · doi:10.1103/PhysRevLett.88.061101
[558] Schützhold, R., Uhlmann, M., Petersen, L., Schmitz, H., Friedenauer, A. and Schätz, T., ”Analogue of Cosmological Particle Creation in an Ion Trap”, Phys. Rev. Lett., 99, 201301, (2007). [DOI], [arXiv:0705.3755 [quant-ph]]. (Cited on page 45.) · doi:10.1103/PhysRevLett.99.201301
[559] Schützhold, R., Uhlmann, M., Xu, Y. and Fischer, U.R., ”Quantum backreaction in dilute Bose-Einstein condensates”, Phys. Rev. D, 72, 105005, 1–8, (2005). [DOI], [cond-mat/0503581]. (Cited on pages 36 and 44.) · doi:10.1103/PhysRevD.72.105005
[560] Schützhold, R. and Unruh, W.G., ”Gravity wave analogues of black holes”, Phys. Rev. D, 66, 044019, 1–13, (2002). [DOI], [gr-qc/0205099]. (Cited on pages 42, 43, 52, 53, 54, and 95.) · doi:10.1103/PhysRevD.66.044019
[561] Schützhold, R. and Unruh, W.G., ”Problems of doubly special relativity with variable speed of light”, J. Exp. Theor. Phys. Lett., 78, 431, (2003). [gr-qc/0308049]. (Cited on page 48.) · doi:10.1134/1.1633311
[562] Schützhold, R. and Unruh, W.G., ”Hawking Radiation in an Electromagnetic Waveguide?”, Phys. Rev. Lett., 95, 031301, 1–4, (2005). [DOI], [quant-ph/0408145]. (Cited on page 44.)
[563] Schützhold, R. and Unruh, W.G., ”On the origin of the particles in black hole evaporation”, Phys. Rev. D, 78, 041504, (2008). [DOI], [arXiv:0804.1686 [gr-qc]]. (Cited on pages 46, 86, and 88.) · doi:10.1103/PhysRevD.78.041504
[564] Schützhold, R. and Unruh, W.G., ”On Quantum Correlations across the Black Hole Horizon”, Phys. Rev. D, 81, 124033, (2010). [DOI], [arXiv:1002.1844 [gr-qc]]. (Cited on pages 47 and 87.) · doi:10.1103/PhysRevD.81.124033
[565] Scully, M.O. and Zubairy, M.S., Quantum Optics, (Cambridge University Press, Cambridge; New York, 1997). [Google Books]. (Cited on page 72.)
[566] Shankaranarayanan, S., ”Is there an imprint of Planck-scale physics on inflationary cosmology?”, Class. Quantum Grav., 20, 75–83, (2003). [DOI], [gr-qc/0203060]. (Cited on page 96.) · Zbl 1014.83055 · doi:10.1088/0264-9381/20/1/305
[567] Shankaranarayanan, S., Padmanabhan, T. and Srinivasan, K., ”Hawking radiation in different coordinate settings: complex paths approach”, Class. Quantum Grav., 19, 2671–2687, (2002). [DOI], [gr-qc/0010042]. (Cited on page 89.) · Zbl 1002.83039 · doi:10.1088/0264-9381/19/10/310
[568] Siemieniec-Ozieblo, G. and Woszczyna, A., ”Acoustic instabilities at the transition from the radiation-dominated to the matter-dominated universe”, Astron. Astrophys., 419, 801–810, (2004). [DOI], [astro-ph/0106562]. (Cited on page 48.) · Zbl 1068.83021 · doi:10.1051/0004-6361:20040097
[569] Sindoni, L., ”The Higgs mechanism in Finsler spacetimes”, Phys. Rev. D, 77, 124009, (2008). [DOI], [arXiv:0712.3518 [gr-qc]]. (Cited on page 46.) · doi:10.1103/PhysRevD.77.124009
[570] Sindoni, L., ”A note on particle kinematics in Hořava-Lifshitz scenarios”, arXiv e-print, (2009). [arXiv:0910.1329 [gr-qc]]. (Cited on page 46.)
[571] Sindoni, L., Girelli, F. and Liberati, S., ”Emergent Gravitational Dynamics in Bose-Einstein Condensates”, in Kowalski-Glikman, J., Durka, R. and Szczachor, M., eds., The Planck Scale, Proceedings of the XXV Max Born Symposium, Wroclaw, Poland, 29 June–03 July 2009, AIP Conference Proceedings, 1196, pp. 258–265, (American Institute of Physics, Melville, NY, 2009). [DOI], [arXiv:0909.5391 [gr-qc]]. (Cited on pages 46 and 107.)
[572] Singha, S.B., Bhattacharjee, J.K. and Ray, A.K., ”Hydraulic jump in one-dimensional flow”, Eur. Phys. J. B, 48, 417–426, (2005). [DOI], [ADS], [arXiv:cond-mat/0508388]. (Cited on page 44.) · doi:10.1140/epjb/e2005-00404-0
[573] Skákala, J. and Visser, M., ”Birefringence in pseudo-Finsler spacetimes”, J. Phys.: Conf. Ser., 189, 012037, (2009). [DOI], [arXiv:0810.4376 [gr-qc]]. (Cited on pages 46, 58, and 62.) · doi:10.1088/1742-6596/189/1/012037
[574] Skákala, J. and Visser, M., ”Pseudo-Finslerian Space-Times and Multirefringence”, Int. J. Mod. Phys. D, 19, 1119–1146, (2010). [DOI], [arXiv:0806.0950 [gr-qc]]. (Cited on pages 46, 58, and 62.) · Zbl 1197.83057 · doi:10.1142/S0218271810017172
[575] Skákala, J. and Visser, M., ”Bi-metric pseudo-Finslerian spacetimes”, J. Geom. Phys., 61, 1396–1400, (2011). [DOI], [arXiv:1008.0689 [gr-qc]]. (Cited on pages 47, 58, and 62.) · Zbl 1218.53024 · doi:10.1016/j.geomphys.2011.03.003
[576] Skrotskii, G.V., ”The influence of gravitation on the propagation of light”, Sov. Phys. Dokl., 2, 226–229, (1957). (Cited on page 40.)
[577] Skudrzyk, E., The Foundations of Acoustics, (Springer, New York, 1971). (Cited on pages 12 and 13.) · Zbl 0251.76052
[578] Slatyer, T.R. and Savage, C.M., ”Superradiant scattering from a hydrodynamic vortex”, Class. Quantum Gram., 22, 3833–3839, (2005). [DOI], [cond-mat/0501182]. (Cited on page 44.) · Zbl 1075.83526 · doi:10.1088/0264-9381/22/19/002
[579] Smolin, L., ”Experimental signatures of quantum gravity”, arXiv e-print, (1995). [gr-qc/9503027]. (Cited on pages 48 and 110.)
[580] Smolin, L., ”How far are we from the quantum theory of gravity?”, arXiv e-print, (2003). [hep-th/0303185]. (Cited on pages 110 and 111.)
[581] Smolyaninov, I.I., ”Linear and nonlinear optics of surface plasmon toy-models of black holes and wormholes”, arXiv e-print, (2003). [gr-qc/0311062]. (Cited on page 48.)
[582] Smolyaninov, I.I. and Davis, C.C., ”Surface plasmon toy model of a rotating black hole”, arXiv e-print, (2003). [gr-qc/0306089]. (Cited on page 48.)
[583] Sorkin, R.D., ”Causal Sets: Discrete Gravity”, in Gomberoff, A. and Marolf, D., eds., Lectures on Quantum Gravity, 2002 Pan-American Advanced Studies Institute School, Valdivia, Chile, January 4–14, 2002, Series of the Centro de Estudios Científicos, pp. 305–328, (Springer, New York, 2005). [gr-qc/0309009]. (Cited on page 48.)
[584] Sotiriou, T.P., Visser, M. and Weinfurtner, S., ”Phenomenologically viable Lorentz-violating quantum gravity”, Phys. Rev. Lett., 102, 251601, (2009). [DOI], [arXiv:0904.4464 [hep-th]]. (Cited on pages 46, 108, and 111.) · doi:10.1103/PhysRevLett.102.251601
[585] Sotiriou, T.P., Visser, M. and Weinfurtner, S., ”Quantum gravity without Lorentz invariance”, J. High Energy Phys., 2009(10), 033, (2009). [DOI], [arXiv:0905.2798 [hep-th]]. (Cited on pages 46, 108, and 111.) · doi:10.1088/1126-6708/2009/10/033
[586] Srinivasan, K. and Padmanabhan, T., ”Particle production and complex path analysis”, Phys. Rev. D, 60, 24007, (1999). [DOI], [gr-qc/9812028]. (Cited on page 89.) · doi:10.1103/PhysRevD.60.024007
[587] Sriramkumar, L. and Padmanabhan, T., ”Initial state of matter fields and trans-Planckian physics: Can CMB observations disentangle the two?”, Phys. Rev. D, 71, 103512, 1–11, (2005). [DOI], [gr-qc/0408034]. (Cited on page 96.) · doi:10.1103/PhysRevD.71.103512
[588] Starobinsky, A.A., ”Robustness of the inflationary perturbation spectrum to trans-Planckian physics”, J. Exp. Theor. Phys. Lett., 73, 415–418, (2001). [DOI], [astro-ph/0104043]. (Cited on page 96.) · doi:10.1134/1.1381588
[589] Starobinsky, A.A. and Tkachev, I.I., ”Trans-Planckian Particle Creation in Cosmology and Ultrahigh Energy Cosmic Rays”, J. Exp. Theor. Phys. Lett., 76, 235–239, (2002). [DOI], [astro-ph/0207572]. (Cited on page 96.) · doi:10.1134/1.1520612
[590] Steinacker, H., ”Emergent Geometry and Gravity from Matrix Models: an Introduction”, Class. Quantum Grav., 27, 133001, (2010). [DOI], [arXiv:1003.4134 [hep-th]]. (Cited on page 47.) · Zbl 1255.83007 · doi:10.1088/0264-9381/27/13/133001
[591] Stephens, G.J. and Hu, B.L., ”Notes on black hole phase transitions”, Int. J. Theor. Phys., 40, 2183–2200, (2001). [DOI], [gr-qc/0102052]. (Cited on pages 48 and 89.) · Zbl 0987.83035 · doi:10.1023/A:1012930019453
[592] Stone, M., ”Magnus and other forces on vortices in superfluids and superconductors”, arXiv e-print, (1997). [cond-mat/9708017]. (Cited on page 47.)
[593] Stone, M., ”Acoustic energy and momentum in a moving medium”, Phys. Rev. E, 62, 1341–1350, (2000). [DOI], [cond-mat/9909315]. (Cited on page 47.) · doi:10.1103/PhysRevE.62.1341
[594] Stone, M., ”Iordanskii force and the gravitational Aharonov-Bohm effect for a moving vortex”, Phys. Rev. B, 61, 11780–11786, (2000). [DOI], [cond-mat/9909313]. (Cited on page 47.) · doi:10.1103/PhysRevB.61.11780
[595] Stone, M., ”Phonons and Forces: Momentum versus Pseudomomentum in Moving Fluids”, arXiv e-print, (2000). [cond-mat/0012316]. (Cited on page 47.)
[596] Sudarshan, E.C.G., ”Massless particles of high spin”, Phys. Rev. D, 24, 1591–1594, (1981). [DOI]. (Cited on page 106.) · doi:10.1103/PhysRevD.24.1591
[597] Synge, J.L., Relativity: The General Theory, (North-Holland, Amsterdam, 1960). (Cited on page 15.) · Zbl 0090.18504
[598] Takeuchi, H., Tsubota, M. and Volovik, G.E., ”Zel’dovich-Starobinsky Effect in Atomic Bose-Einstein Condensates: Analogy to Kerr Black Hole”, J. Low Temp. Phys., 150, 624–629, (2008). [DOI], [ADS], [arXiv:0710.2178 [cond-mat.other]]. (Cited on page 46.) · doi:10.1007/s10909-007-9592-6
[599] Tamaki, T., Harada, T., Miyamoto, U. and Torii, T., ”Particle velocity in noncommutative space-time”, Phys. Rev. D, 66, 105003, 1–6, (2002). [DOI], [gr-qc/0208002]. (Cited on page 48.)
[600] Tanaka, T., ”A comment on trans-Planckian physics in inflationary universe”, arXiv e-print, (2001). [astro-ph/0012431]. (Cited on pages 48 and 96.)
[601] Thorne, K.S., Price, R.H. and Macdonald, D.A., eds., Black Holes: The Membrane Paradigm, (Yale University Press, New Haven, CT; London, 1986). (Cited on page 22.) · Zbl 1374.83002
[602] Trautman, A., ”Comparison of Newtonian and relativistic theories of space-time”, in Hoffman, B., ed., Perspectives in Geometry and Relativity: Essays in honor of Václav Hlavatý, pp. 413–425, (Indiana University Press, Bloomington, IN, 1966). (Cited on page 47.)
[603] Turukhin, A.V., Sudarshanam, V.S., Shahriar, M.S., Musser, J.A., Ham, B.S. and Hemmer, P.R., ”Observation of Ultraslow and Stored Light Pulses in a Solid”, Phys. Rev. Lett., 88, 023602, 1–4, (2002). (Cited on page 72.)
[604] Uhlmann, M., ”Time-resolved density correlations as probe of squeezing in toroidal Bose-Einstein condensates”, New J. Phys., 12, 095016, (2010). [DOI], [arXiv:1005.2645 [cond-mat.quant-gas]]. URL (accessed 13 December 2010): http://stacks.iop.org/1367-2630/12/i=9/a=095016. (Cited on pages 47 and 87.) · doi:10.1088/1367-2630/12/9/095016
[605] Uhlmann, M., Xu, Y. and Schützhold, R., ”Aspects of cosmic inflation in expanding Bose-Einstein condensates”, New J. Phys., 7, 248, (2005). [DOI], [arXiv:quant-ph/0509063]. URL (accessed 20 March 2011): http://stacks.iop.org/1367-2630/7/i=1/a=248. (Cited on page 44.) · doi:10.1088/1367-2630/7/1/248
[606] Unruh, W.G., ”Notes on black-hole evaporation”, Phys. Rev. D, 14, 870–892, (1976). [DOI]. (Cited on page 79.) · doi:10.1103/PhysRevD.14.870
[607] Unruh, W.G., ”Experimental black hole evaporation”, Phys. Rev. Lett., 46, 1351–1353, (1981). [DOI]. (Cited on pages 10, 11, 22, 23, 25, 35, 42, 81, and 111.) · doi:10.1103/PhysRevLett.46.1351
[608] Unruh, W.G., ”Sonic analog of black holes and the effects of high frequencies on black hole evaporation”, Phys. Rev. D, 51, 2827–2838, (1995). [DOI], [gr-qc/9409008]. (Cited on pages 22, 25, 27, 42, 81, 82, 83, and 98.) · doi:10.1103/PhysRevD.51.2827
[609] Unruh, W.G., ”The Analogue Between Rimfall and Black Holes”, in Unruh, W.G. and Schützhold, R., eds., Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Selected lectures from the international workshop on ’Quantum Simulations via Analogues’, held in Dresden, Germany, July 25–28, 2005, Lecture Notes in Physics, 718, pp. 1–4, (Springer, Berlin; New York, 2007). [DOI]. (Cited on page 45.)
[610] Unruh, W.G., ”Where are the particles created in black hole evaporation?”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11–15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). URL (accessed 13 December 2010): http://pos.sissa.it/contribution?id=PoS(QG-Ph)039. (Cited on pages 45, 86, and 88.)
[611] Unruh, W.G., ”Dumb holes: Analogues for black holes”, Philos. Trans. R. Soc. London, Ser. A, 366, 2905–2913, (2008). [DOI]. (Cited on pages 86 and 88.) · Zbl 1153.81462 · doi:10.1098/rsta.2008.0062
[612] Unruh, W.G. and Schützhold, R., ”On slow light as a black hole analogue”, Phys. Rev. D, 68, 024008, 1–14, (2003). [DOI], [gr-qc/0303028]. (Cited on pages 44, 74, 75, 79, and 87.) · Zbl 1167.83321 · doi:10.1103/PhysRevD.68.024008
[613] Unruh, W.G. and Schützhold, R., ”Universality of the Hawking effect”, Phys. Rev. D, 71, 024028, 1–11, (2005). [DOI], [gr-qc/0408009]. (Cited on pages 44, 80, 82, 83, and 86.) · doi:10.1103/PhysRevD.71.024028
[614] Unruh, W.G. and Schützhold, R., eds., Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Selected lectures from the international workshop on ’Quantum Simulations via Analogues’, held in Dresden, Germany, July 25–28, 2005, Lecture Notes in Physics, 718, (Springer, Berlin; New York, 2007). [DOI]. (Cited on page 9.) · Zbl 1115.83001
[615] Vachaspati, T., ”Propagating phase boundaries as sonic horizons”, arXiv e-print, (2003). [gr-qc/0312069]. (Cited on page 44.)
[616] Vachaspati, T., ”Cosmic Problems for Condensed Matter Experiment”, J. Low Temp. Phys., 136, 361–377, (2004). [DOI], [cond-mat/0404480]. (Cited on page 44.) · doi:10.1023/B:JOLT.0000041272.60259.50
[617] Vestergaard Hau, L., Harris, S.E., Dutton, Z. and Behroozi, C.H., ”Light speed reduction to 17 metres per second in ultracold atomic gas”, Nature, 397, 594–598, (1999). [DOI]. (Cited on page 72.) · doi:10.1038/17561
[618] Vikman, A., K-essence: cosmology, causality and emergent geometry, Ph.D. Thesis, (LMU, Munich, 2007). URL (accessed 17 March 2011): http://edoc.ub.uni-muenchen.de/7761/. (Cited on page 45.)
[619] Vishveshwara, C.V., ”Scattering of gravitational radiation by a Schwarzschild black-hole”, Nature, 227, 936–938, (1970). [DOI]. (Cited on page 90.) · doi:10.1038/227936a0
[620] Vishveshwara, C.V., ”Stability of the Schwarzschild metric”, Phys. Rev. D, 1, 2870–2879, (1970). [DOI]. (Cited on page 90.) · doi:10.1103/PhysRevD.1.2870
[621] Visser, M., ”Dirty black holes: Thermodynamics and horizon structure”, Phys. Rev. D, 46, 2445–2451, (1992). [DOI], [hep-th/9203057]. (Cited on pages 22 and 25.) · doi:10.1103/PhysRevD.46.2445
[622] Visser, M., ”Acoustic propagation in fluids: An unexpected example of Lorentzian geometry”, arXiv e-print, (1993). [gr-qc/9311028]. (Cited on pages 10, 11, 35, and 42.)
[623] Visser, M., Lorentzian Wormholes: From Einstein to Hawking, AIP Series in Computational and Applied Mathematical Physics, (American Institute of Physics, Woodbury, NY, 1995). (Cited on page 26.)
[624] Visser, M., ”Acoustic black holes: Horizons, ergospheres, and Hawking radiation”, Class. Quantum Grav., 15, 1767–1791, (1998). [DOI], [gr-qc/9712010]. (Cited on pages 10, 11, 16, 23, 34, 35, 42, 90, and 111.) · Zbl 0947.83029 · doi:10.1088/0264-9381/15/6/024
[625] Visser, M., ”Hawking radiation without black hole entropy”, Phys. Rev. Lett., 80, 3436–3439, (1998). [DOI], [gr-qc/9712016]. (Cited on page 42.) · Zbl 0949.83034 · doi:10.1103/PhysRevLett.80.3436
[626] Visser, M., ”Acoustic black holes”, arXiv e-print, (1999). [gr-qc/9901047]. (Cited on pages 10, 11, 35, and 42.)
[627] Visser, M., ”Comment on ”Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity””, Phys. Rev. Lett., 85, 5252, (2000). [DOI], [gr-qc/0002011]. (Cited on page 74.) · doi:10.1103/PhysRevLett.85.5252
[628] Visser, M., ”Sakharov’s induced gravity: A modern perspective”, Mod. Phys. Lett. A, 17, 977–992, (2002). [DOI], [gr-qc/0204062]. (Cited on pages 106 and 108.) · Zbl 1083.83544 · doi:10.1142/S0217732302006886
[629] Visser, M., ”Essential and inessential features of Hawking radiation”, Int. J. Mod. Phys. D, 12, 649–661, (2003). [DOI], [hep-th/0106111]. (Cited on page 78.) · Zbl 1079.83532 · doi:10.1142/S0218271803003190
[630] Visser, M., ”The quantum physics of chronology protection”, in Gibbons, G.W., Shellard, E.P.S. and Rankin, S.J., eds., The Future of Theoretical Physics and Cosmology: Celebrating Stephen Hawking’s 60th Birthday, pp. 161–175, (Cambridge University Press, Cambridge; New York, 2003). [gr-qc/0204022], [Google Books]. (Cited on page 17.)
[631] Visser, M., ”Heuristic approach to the Schwarzschild geometry”, Int. J. Mod. Phys. D, 14, 2051–2067, (2005). [DOI], [gr-qc/0309072]. (Cited on page 47.) · Zbl 1097.83012 · doi:10.1142/S0218271805007929
[632] Visser, M., ”Emergent rainbow spacetimes: Two pedagogical examples”, arXiv e-print, (2007). [arXiv:0712.0810 [gr-qc]]. (Cited on page 45.)
[633] Visser, M., ”The Kerr spacetime: A brief introduction”, arXiv e-print, (2007). [arXiv:0706.0622 [gr-qc]]. (Cited on pages 29 and 95.)
[634] Visser, M., ”Lorentz symmetry breaking as a quantum field theory regulator”, Phys. Rev. D, 80, 025011, (2009). [DOI], [arXiv:0902.0590 [hep-th]]. (Cited on pages 46 and 111.) · doi:10.1103/PhysRevD.80.025011
[635] Visser, M., ”Power-counting renormalizability of generalized Hořava gravity”, arXiv e-print, (2009). [arXiv:0912.4757 [hep-th]]. (Cited on pages 108 and 111.)
[636] Visser, M., Barceló, C. and Liberati, S., ”Acoustics in Bose-Einstein Condensates as an Example of Broken Lorentz Symmetry”, in Kostelecký, V.A., ed., CPT and Lorentz Symmetry, Proceedings of the Second Meeting, Bloomington, USA, 15–18 August 2001, pp. 336–340, (World Scientific, Singapore; River Edge, NJ, 2002). [DOI], [hep-th/0109033]. Online version (accessed 22 March 2011): http://eproceedings.worldscinet.com/9789812778123/9789812778123_0043.html. (Cited on page 43.) · Zbl 1104.83306
[637] Visser, M., Barceló, C. and Liberati, S., ”Analogue models of and for gravity”, Gen. Relativ. Gravit., 34, 1719–1734, (2002). [DOI], [gr-qc/0111111]. (Cited on page 43.) · Zbl 1015.83029 · doi:10.1023/A:1020180409214
[638] Visser, M., Barceló, C. and Liberati, S., ”Bi-refringence versus bi-metricity”, arXiv e-print, (2002). [gr-qc/0204017]. (Cited on pages 58 and 103.)
[639] Visser, M. and Molina-París, C., ”Acoustic geometry for general relativistic barotropic irrotational fluid flow”, New J. Phys., 12, 095014, (2010). [DOI], [arXiv:1001.1310 [gr-qc]]. URL (accessed 20 March 2011): http://stacks.iop.org/1367-2630/12/i=9/a=095014. (Cited on pages 47, 50, 51, and 52.) · doi:10.1088/1367-2630/12/9/095014
[640] Visser, M. and Weinfurtner, S., ”Massive phonon modes from a BEC-based analog model”, arXiv e-print, (2004). [cond-mat/0409639]. (Cited on page 44.)
[641] Visser, M. and Weinfurtner, S., ”Vortex analogue for the equatorial geometry of the Kerr black hole”, Class. Quantum Grav., 22, 2493–2510, (2004). [DOI], [gr-qc/0409014]. (Cited on pages 25, 29, 34, 44, and 95.) · Zbl 1077.83036 · doi:10.1088/0264-9381/22/12/011
[642] Visser, M. and Weinfurtner, S., ”Massive Klein-Gordon equation from a BEC-based analogue spacetime”, Phys. Rev. D, 72, 044020, (2005). [DOI], [arXiv:gr-qc/0506029]. (Cited on page 44.) · doi:10.1103/PhysRevD.72.044020
[643] Visser, M. and Weinfurtner, S., ”Analogue spacetimes: Toy models for ’quantum gravity”’, in From Quantum to Emergent Gravity: Theory and Phenomenology, Proceedings of Science, (SISSA, Trieste, 2007). [arXiv:0712.0427 [gr-qc]]. URL (accessed 13 December 2010): http://pos.sissa.it/contribution?id=PoS(QG-Ph)042. (Cited on pages 45, 54, and 67.)
[644] Volovik, G.E., ”Is there analogy between quantized vortex and black hole?”, arXiv e-print, (1995). [gr-qc/9510001]. (Cited on page 42.)
[645] Volovik, G.E., ”AB interface in superfluid 3He and Casimir effect”, J. Exp. Theor. Phys. Lett., 63, 483–489, (1996). [DOI], [cond-mat/9602129]. (Cited on page 42.) · doi:10.1134/1.567052
[646] Volovik, G.E., ”Cosmology, particle physics and superfluid 3He”, Czech. J. Phys., 46, 3048, (1996). [DOI], [cond-mat/9607212]. (Cited on page 26.) · doi:10.1007/BF02548109
[647] Volovik, G.E., ”Induced gravity in superfluid 3He”, J. Low Temp. Phys., 113, 667–680, (1997). [cond-mat/9806010]. (Cited on page 42.) · doi:10.1023/A:1022545226102
[648] Volovik, G.E., ”Energy-momentum tensor of quasiparticles in the effective gravity in super-fluids”, arXiv e-print, (1998). [gr-qc/9809081]. (Cited on page 42.)
[649] Volovik, G.E., ”Gravity of monopole and string and gravitational constant in 3He-A”, J. Exp. Theor. Phys. Lett., 67, 698–704, (1998). [DOI], [cond-mat/9804078]. (Cited on page 42.) · doi:10.1134/1.567704
[650] Volovik, G.E., ”Vortex vs. spinning string: Iordanskii force and gravitational Aharonov-Bohm effect”, J. Exp. Theor. Phys. Lett., 67, 841–846, (1998). [cond-mat/9804308]. (Cited on page 47.)
[651] Volovik, G.E., ”Simulation of Painlevé-Gullstrand black hole in thin 3He-A film”, J. Exp. Theor. Phys. Lett., 69, 662–668, (1999). [DOI], [gr-qc/9901077]. (Cited on page 42.) · doi:10.1134/1.568079
[652] Volovik, G.E., ”3He and Universe parallelism”, in Bunkov, Y.M. and Godfrin, H., eds., Topo-logical defects and the non-equilibrium dynamics of symmetry breaking phase transitions, pp.353–387, (Kluwer Academic, Dordrecht; Boston, 2000). [cond-mat/9902171], [Google Books]. (Cited on page 42.)
[653] Volovik, G.E., ”Links between gravity and dynamics of quantum liquids”, Grav. and Cosmol., 6, 187–203, (2000). [gr-qc/0004049]. (Cited on page 43.)
[654] Volovik, G.E., ”Fermion Zero Modes in Painlevé-Gullstrand Black Hole”, J. Exp. Theor. Phys. Lett., 73, 721–725, (2001). [DOI], [gr-qc/0104088]. (Cited on page 43.)
[655] Volovik, G.E., ”Superfluid analogies of cosmological phenomena”, Phys. Rep., 351, 195–348, (2001). [DOI], [gr-qc/0005091]. (Cited on pages 9 and 43.) · Zbl 1097.82568 · doi:10.1016/S0370-1573(00)00139-3
[656] Volovik, G.E., ”Vacuum Energy and Cosmological Constant: View from Condensed Matter”, J. Low Temp. Phys., 124, 25–39, (2001). [DOI], [gr-qc/0101111]. (Cited on page 43.) · doi:10.1023/A:1017561415063
[657] Volovik, G.E., ”Black-hole horizon and metric singularity at the brane separating two sliding superfluids”, J. Exp. Theor. Phys. Lett., 76, 296–300, (2002). [DOI], [gr-qc/0208020]. (Cited on pages 71, 72, 79, 95, and 100.)
[658] Volovik, G.E., ”Effective gravity and quantum vacuum in superfluids”, in Novello, M., Visser, M. and Volovik, G., eds., Artificial Black Holes, pp. 127–177, (World Scientific, Singapore; River Edge, NJ, 2002). [gr-qc/0104046], [Google Books]. (Cited on page 43.)
[659] Volovik, G.E., ”Momentum space topology of fermion zero modes on brane”, J. Exp. Theor. Phys. Lett., 75, 63–66, (2002). [DOI], [gr-qc/0112016]. (Cited on pages 71 and 72.) · doi:10.1134/1.1466477
[660] Volovik, G.E., The Universe in a Helium Droplet, International Series of Monographs on Physics, 117, (Clarendon Press; Oxford University Press, Oxford; New York, 2003). [Google Books]. (Cited on pages 9, 70, 77, 105, 107, and 108.)
[661] Volovik, G.E., ”What can the quantum liquid say on the brane black hole, the entropy of extremal black hole and the vacuum energy?”, Found. Phys., 33, 349–368, (2003). [DOI], [gr-qc/0301043]. (Cited on page 44.) · doi:10.1023/A:1023762013553
[662] Volovik, G.E., ”The hydraulic jump as a white hole”, J. Exp. Theor. Phys. Lett., 82, 624–627, (2005). [DOI], [arXiv:physics/0508215]. (Cited on page 44.) · doi:10.1134/1.2166908
[663] Volovik, G.E., ”Black-hole and white-hole horizons in superfluids”, J. Low Temp. Phys., 145, 337–356, (2006). [DOI], [arXiv:gr-qc/0603093]. (Cited on page 45.) · doi:10.1007/s10909-006-9248-y
[664] Volovik, G.E., ”From quantum hydrodynamics to quantum gravity”, in Kleinert, H., Jantzen, R.T. and Ruffini, R., eds., The Eleventh Marcel Grossmann Meeting On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the MG11 Meeting on General Relativity, Berlin, Germany, 23–29 July 2006, pp. 1451–1470, (World Scientific, River Edge, NJ; Singapore, 2007). [DOI], [arXiv:gr-qc/0612134]. Online version (accessed 22 March 2011): http://eproceedings.worldscinet.com/9789812834300/9789812834300_0170.html. (Cited on page 45.)
[665] Volovik, G.E., ”Twenty years of magnon Bose condensation and spin current superfluidity in 3He-B”, J. Low Temp. Phys., 153, 266–284, (2008). [DOI], [arXiv:cond-mat/0701180]. (Cited on page 48.) · doi:10.1007/s10909-008-9845-z
[666] Volovik, G.E., ”z = 3 Lifshitz-Horava model and Fermi-point scenario of emergent gravity”, J. Exp. Theor. Phys. Lett., 89, 525–528, (2009). [DOI], [arXiv:0904.4113 [gr-qc]]. (Cited on page 46.) · doi:10.1134/S0021364009110010
[667] Volovik, G.E. and Vachaspati, T., ”Aspects of 3He and the Standard Electroweak Model”, Int. J. Mod. Phys. B, 10, 471–521, (1996). [DOI], [cond-mat/9510065]. (Cited on page 26.) · doi:10.1142/S0217979296000209
[668] Volovik, G.E. and Zelnikov, A.I., ”Universal temperature corrections to the free energy for the gravitational field”, J. Exp. Theor. Phys. Lett., 78, 751–756, (2003). [DOI], [gr-qc/0309066]. (Cited on page 44.) · doi:10.1134/1.1663997
[669] Vozmediano, M.A.H., de Juan, F. and Cortijo, A., ”Gauge fields and curvature in graphene”, J. Phys.: Conf. Ser., 129, 012001, (2008). [DOI]. (Cited on page 76.) · Zbl 1308.82068 · doi:10.1088/1742-6596/129/1/012001
[670] Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). [Google Books]. (Cited on pages 15, 16, 18, 25, and 33.)
[671] Wald, R.M., ”The Thermodynamics of Black Holes”, Living Rev. Relativity, 4, lrr-2001-6, (2001). URL (accessed 31 May 2005): http://www.livingreviews.org/lrr-2001-6. (Cited on page 18.)
[672] Wallace, P.R., ”The Band Theory of Graphite”, Phys. Rev., 71, 622–634, (1947). [DOI]. (Cited on page 76.) · Zbl 0033.14304 · doi:10.1103/PhysRev.71.622
[673] Weinberg, S. and Witten, E., ”Limits on massless particles”, Phys. Lett. B, 96, 59–62, (1980). [DOI]. (Cited on page 106.) · doi:10.1016/0370-2693(80)90212-9
[674] Weinfurtner, S., Simulation of gravitational objects in Bose-Einstein condensates, Diploma Thesis, (Technical University of Munich and Max Planck Institute of Quantum Optics, Garching, Munich, 2004). [gr-qc/0404022]. in German. (Cited on pages 30 and 96.)
[675] Weinfurtner, S., ”Analog model for an expanding universe”, Gen. Relativ. Gravit., 37, 1549–1554, (2005). [DOI], [arXiv:gr-qc/0404063]. (Cited on pages 30, 44, and 96.) · Zbl 1080.83027 · doi:10.1007/s10714-005-0135-7
[676] Weinfurtner, S., ”Emergent spacetimes”, arXiv e-print, (2007). [arXiv:0711.4416 [gr-qc]]. (Cited on pages 30, 32, and 45.)
[677] Weinfurtner, S., Jain, P., Visser, M. and Gardiner, C.W., ”Cosmological particle production in emergent rainbow spacetimes”, Class. Quantum Grav., 26, 065012, (2009). [DOI], [arXiv:0801.2673 [gr-qc]]. (Cited on pages 30, 32, 46, and 96.) · Zbl 1162.83377 · doi:10.1088/0264-9381/26/6/065012
[678] Weinfurtner, S., Liberati, S. and Visser, M., ”Analogue model for quantum gravity phenomenology”, J. Phys. A: Math. Gen., 39, 6807–6814, (2006). [DOI], [arXiv:gr-qc/0511105]. (Cited on page 44.) · Zbl 1097.83014 · doi:10.1088/0305-4470/39/21/S83
[679] Weinfurtner, S., Liberati, S. and Visser, M., ”Modelling Planck-scale Lorentz violation via analogue models”, J. Phys.: Conf. Ser., 33, 373–385, (2006). [DOI], [arXiv:gr-qc/0512127]. (Cited on page 44.) · doi:10.1088/1742-6596/33/1/046
[680] Weinfurtner, S., Liberati, S. and Visser, M., ”Analogue Space-time Based on 2-Component Bose-Einstein Condensates”, in Unruh, W.G. and Schützhold, R., eds., Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Selected lectures from the international workshop on ’Quantum Simulations via Analogues’, held in Dresden, Germany, July 25–28, 2005, Lecture Notes in Physics, 718, pp. 115–163, (Springer, Berlin; New York, 2007). [DOI], [arXiv:gr-qc/0605121]. (Cited on page 45.) · Zbl 1131.83016
[681] Weinfurtner, S., Sotiriou, T.P. and Visser, M., ”Projectable Hořava-Lifshitz gravity in a nutshell”, J. Phys.: Conf. Ser., 222, 012054, (2010). [DOI], [arXiv:1002.0308 [gr-qc]]. (Cited on pages 108 and 111.) · doi:10.1088/1742-6596/222/1/012054
[682] Weinfurtner, S., Tedford, E.W., Penrice, M.C.J., Unruh, W.G. and Lawrence, G.A., ”Measurement of stimulated Hawking emission in an analogue system”, Phys. Rev. Lett., 106, 021302, (2011). [DOI], [arXiv:1008.1911 [gr-qc]]. (Cited on pages 42, 47, 53, 54, 83, 87, 88, 99, and 111.) · doi:10.1103/PhysRevLett.106.021302
[683] Weinfurtner, S., Visser, M., Jain, P. and Gardiner, C.W., ”On the phenomenon of emergent spacetimes: An instruction guide for experimental cosmology”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11–15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). [arXiv:0804.1346 [gr-qc]]. URL (accessed 13 December 2010): http://pos.sissa.it/contribution?id=PoS(QG-Ph)044. (Cited on pages 30, 32, 46, and 96.)
[684] Weinfurtner, S., White, A. and Visser, M., ”Trans-Planckian physics and signature change events in Bose gas hydrodynamics”, Phys. Rev. D, 76, 124008, (2007). [DOI], [arXiv:gr-qc/0703117]. (Cited on pages 45 and 47.) · doi:10.1103/PhysRevD.76.124008
[685] Weinfurtner, S., White, A. and Visser, M., ”Signature-change events in emergent spacetimes with anisotropic scaling”, J. Phys.: Conf. Ser., 189, 012046, (2009). [DOI], [arXiv:0905.4530 [gr-qc]]. (Cited on pages 46 and 47.) · doi:10.1088/1742-6596/189/1/012046
[686] White, A., Weinfurtner, S. and Visser, M., ”Signature change events: A challenge for quantum gravity?”, Class. Quantum Grav., 27, 045007, (2010). [DOI], [arXiv:0812.3744 [gr-qc]]. (Cited on pages 46 and 47.) · Zbl 1186.83063 · doi:10.1088/0264-9381/27/4/045007
[687] White, R.W., ”Acoustic ray tracing in moving inhomogeneous fluids”, J. Acoust. Soc. Am. 53, 1700–1704, (1973). [DOI]. (Cited on page 41.) · doi:10.1121/1.1913522
[688] Winicour, J., ”A New Way to Make Waves”, arXiv e-print, (2000). [gr-qc/0003029]. (Cited on page 49.)
[689] Winterberg, F., ”Detection of gravitational waves by stellar scintillation in space”, Nuovo Cimento B, 53, 264–279, (1968). [DOI]. (Cited on page 40.) · doi:10.1007/BF02710236
[690] Wolf, E. and Habashy, T., ”Invisible bodies and uniqueness of the inverse scattering problem”, J. Mod. Opt., 40, 785–792, (1993). [DOI]. (Cited on page 97.) · doi:10.1080/09500349314550821
[691] Wu, X.-N., Huang, C.-G. and Sun, J.-R., ”On Gravitational anomaly and Hawking radiation near weakly isolated horizon”, Phys. Rev. D, 77, 124023, (2008). [DOI], [arXiv:0801.1347 [gr-qc]]. (Cited on page 46.) · doi:10.1103/PhysRevD.77.124023
[692] Xi, P. and Li, X.-Z., ”Quasinormal Modes and Late-Time Tails of Canonical Acoustic Black Holes”, Int. J. Mod. Phys. D, 16, 1211–1218, (2007). [DOI], [arXiv:0709.3714 [gr-qc]]. (Cited on page 45.) · Zbl 1200.83086 · doi:10.1142/S0218271807010687
[693] Xu, C., ”Novel Algebraic Boson Liquid phase with soft Graviton excitations”, arXiv e-print, (2006). [arXiv:cond-mat/0602443]. (Cited on page 105.)
[694] Xu, C. and Hořava, P., ”Emergent Gravity at a Lifshitz Point from a Bose Liquid on the Lattice”, Phys. Rev. D, 81, 104033, (2010). [DOI], [arXiv:1003.0009 [hep-th]]. (Cited on pages 105 and 111.) · doi:10.1103/PhysRevD.81.104033
[695] Zaslavsky, O.B., ”Geometry and thermodynamics of quantum-corrected acceleration horizons”, Class. Quantum Grav., 17, 497–512, (2000). [DOI], [gr-qc/9812052]. (Cited on page 48.) · Zbl 0943.83033 · doi:10.1088/0264-9381/17/2/315
[696] Zel’dovich, Y.B., ”The Generation of Waves by a Rotating Body”, J. Exp. Theor. Phys. Lett., 14, 180, (1971). (Cited on page 95.)
[697] Zel’dovich, Y.B., ”Amplification of cylindrical electromagnetic waves reflected from a rotating body”, Sov. Phys. JETP, 35, 1085, (1972). (Cited on page 95.)
[698] Zerilli, F.J., ”Effective potential for even parity Regge-Wheeler gravitational perturbation equations”, Phys. Rev. Lett., 24, 737–738, (1970). [DOI]. (Cited on page 90.) · doi:10.1103/PhysRevLett.24.737
[699] Zhang, P.-M., Cao, L.-M., Duan, Y.-S. and Zhong, C.-K., ”Transverse force on a moving vortex with the acoustic geometry”, Phys. Lett. A, 326, 375, (2004). [DOI], [hep-th/0501073]. (Cited on page 44.) · Zbl 1138.82336 · doi:10.1016/j.physleta.2004.04.060
[700] Zhidenko, A., Linear perturbations of black holes: stability, quasi-normal modes and tails, Ph.D. Thesis, (Universidade de São Paolo, São Paolo, 2009). [arXiv:0903.3555 [gr-qc]]. (Cited on page 46.)
[701] Zloshchastiev, K.G., ”Acoustic phase lenses in superfluid He as models of composite spacetimes in general relativity: Classical and quantum properties with provision for spatial topology”, Acta Phys. Pol. B, 30, 897–905, (1999). [gr-qc/9802060]. (Cited on page 48.)
[702] Zloshchastiev, K.G., ”Non-linear phenomena in electrical circuits: Simulation of non-linear relativistic field theory and possible applications”, arXiv e-print, (1999). [cond-mat/9912149]. (Cited on page 48.)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.