×

A Galerkin boundary cover method for viscous fluid flows. (English) Zbl 1476.76059

Summary: A Galerkin boundary cover method (GBCM) is developed for modeling of two-dimensional incompressible viscous fluid flows. In this approach, a combination of the finite cover system employed in the numerical manifold method with the Galerkin approximation of the boundary integral equations is presented. It is applicable to both interior and exterior domains due to its naturally variational formulations. In contrast to the domain-type approach, only the boundary data is required in the newly explained method, makes it suitable for the exterior problems. To increase the solution accuracy without refining the local mesh, different cover functions can be implemented on different covers; thereby, the \(p\)-adaptive computations can be carried out conveniently. Further, the boundary conditions are imposed accurately and the system matrices are both symmetric and positive definite. The given numerical examples demonstrate the high accuracy and convergence rates of the proposed methodology by using a few covers.

MSC:

76M99 Basic methods in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Castillo, E.; Codina, R., Stabilized stress-velocity-pressure finite element formulations of the Navier-Stokes problem for fluids with non-linear viscosity, Comput. Methods Appl. Mech. Engrg., 279, 554-578 (2014) · Zbl 1423.76216
[2] Chorin, A. J., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 135, 118-125 (1997) · Zbl 0899.76283
[3] Onate, E.; Sacco, C.; Idelsohn, S., A finite point method for incompressible flow problems, Comput. Vis. Sci., 3, 67-75 (2000) · Zbl 1060.76629
[4] Fang, J. N.; Parriaux, A., A regularized Lagrangian finite point method for the simulation of incompressible viscous flows, J. Comput. Phys., 227, 8894-8908 (2008) · Zbl 1165.76041
[5] Lin, H.; Atluri, S. N., The meshless local Petrov-Galerkin (MLPG) method for solving incompressible Navier-Stokes equations, Comput. Model. Eng. Sci., 2, 117-142 (2001)
[6] Wu, X. H.; Tao, W. Q.; Shen, S. P., A stabilized MLPG method for steady state incompressible fluid flow simulation, J. Comput. Phys., 229, 8564-8577 (2010) · Zbl 1381.76272
[7] Demirkaya, G.; Soh, C. W.; Ilegbusi, O. J., Direct solution of Navier-Stokes equations by radial basis functions, Appl. Math. Model., 32, 1848-1858 (2008) · Zbl 1145.76346
[8] Chernih, A.; Le Gia, Q. T., Multiscale methods with compactly sup-ported radial basis functions for the Stokes problem on bounded domains, Adv. Comput. Math., 42, 1187-1208 (2016) · Zbl 1355.41013
[9] Power, H.; Mingo, R., The DRM subdomain decomposition approach to solve the two-dimensional Navier-Stokes system of equations, Eng. Anal. Bound. Elem., 24, 107-119 (2000) · Zbl 0981.76061
[10] Alves, C. J.S.; Silvestre, A. L., Density results using Stokeslets and a method of fundamental solutions for the Stokes equations, Eng. Anal. Bound. Elem., 28, 1245-1252 (2004) · Zbl 1079.76058
[11] Young, D. L.; Jane, S. C.; Fan, C. M., The method of fundamental solutions for 2D and 3D Stokes problems, J. Comput. Phys., 211, 1-8 (2006) · Zbl 1160.76332
[12] Li, X. L.; Zhu, J. L., A meshless Galerkin method for Stokes problems using boundary integral equations, Comput. Methods Appl. Mech. Engrg., 198, 2874-2885 (2009) · Zbl 1229.76076
[13] Li, X. L., Meshless analysis of two-dimensional Stokes flows with the Galerkin boundary node method, Eng. Anal. Bound. Elem., 34, 79-91 (2010) · Zbl 1244.76079
[14] Li, X. L., The meshless Galerkin boundary node method for Stokes problems in three dimensions, Internat. J. Numer. Methods Engrg., 88, 442-472 (2011) · Zbl 1242.76244
[15] Shi, G. H., Manifold method of material analysis, 57-76 (1991), U.S. Army Research Office: U.S. Army Research Office Minneapolis, MN
[16] Ma, G. W.; An, X. M.; He, L., The numerical manifold method: a review, Int. J. Comput. Methods, 7, 1-32 (2010) · Zbl 1267.74129
[17] Chen, G. Q.; Ohnishi, Y.; Ito, T., Development of high-order manifold method, Internat. J. Numer. Methods Engrg., 43, 685-712 (1998) · Zbl 0945.74078
[18] Li, S.; Cheng, Y.; Wu, Y. F., Numerical manifold method based on the method of weighted residuals, Comput. Mech., 35, 470-480 (2005) · Zbl 1109.74373
[19] Qu, X. L.; Wang, Y.; Fu, G. Y., Efficiency and accuracy verification of the explicit numerical manifold method for dynamic problems, Rock Mech. Rock Eng., 48, 1131-1142 (2015)
[20] Zhang, Y. L.; Liu, D. X.; Tan, F., Numerical manifold method based on isogeometric analysis, Sci. China E., 58, 1520-1532 (2015)
[21] Fan, H.; Zheng, H.; He, S., S-R Decomposition based numerical manifold method, Comput. Methods Appl. Mech. Engrg., 304, 452-478 (2016) · Zbl 1425.74461
[22] Jiang, Q. H.; Deng, S. S.; Zhou, C. B., Modeling unconfined seepage flow using three-dimensional numerical manifold method, J. Hydrodyn., 22, 554-561 (2010)
[23] Wang, Y.; Hu, M. S.; Zhou, Q. L., A new second-order numerical manifold method model with an efficient scheme for analyzing free surface flow with inner drains, Appl. Math. Model., 40, 1427-1445 (2016) · Zbl 1446.76052
[24] Liu, G.; Zhuang, X.; Cui, Z., Three-dimensional slope stability analysis using independent cover based numerical manifold and vector method, Eng. Geol., 225, 83-95 (2017)
[25] Tal, Y.; Hatzor, Y. H.; Feng, X. T., An improved numerical manifold method for simulation of sequential excavation in fractured rocks, Int. J. Rock. Mech. Min., 65, 116-128 (2014)
[26] Zhao, G. F.; Zhao, X. B.; Zhu, J. B., Application of the numerical manifold method for stress wave propagation across rock masses, Int. J. Numer. Anal. Methods Geomech., 38, 92-110 (2014)
[27] Tsay, R. J.; Chiou, Y. J.; Chuang, W. L., Crack growth prediction by manifold method, J. Eng. Mech., 125, 884-890 (1999)
[28] Wu, Z. J.; Wong, L. N.Y., Frictional crack initiation and propagation analysis using the numerical manifold method, Comput. Geotech., 39, 38-53 (2012)
[29] Yang, Y.; Sun, G.; Zheng, H., A four-node quadrilateral element fitted to numerical manifold method with continuous nodal stress for crack analysis, Comput. Struct., 177, 69-82 (2016)
[30] He, J.; Liu, Q. S.; Ma, G. W., An improved numerical manifold method incorporating hybrid crack element for crack propagation simulation, Int. J. Fract., 199, 21-38 (2016)
[31] Yang, Y. T.; Tang, X. H.; Zheng, H., Three-dimensional fracture propagation with numerical manifold method, Eng. Anal. Bound. Elem., 72, 65-77 (2016) · Zbl 1403.74091
[32] Yang, Y. T.; Tang, X. H.; Zheng, H., Hydraulic fracturing modeling using the enriched numerical manifold method, Appl. Math. Model., 53, 462-486 (2018) · Zbl 1480.74279
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.