×

Implementation of particle-in-cell stellar dynamics codes on the connection machine-2. (English) Zbl 0800.70010

Summary: The development of massively parallel supercomputers provides a unique opportunity to advance the state of the art in \(N\)-body simulations. These \(N\)-body codes are of great importance for simulations in stellar dynamics and plasma physics. For systems with long-range forces, such as gravity or electromagnetic forces, it is important to increase the number of particles to \(N\geq 10^7\) particles. Significantly improved modeling of \(N\) body systems can be expected by increasing \(N\), arising from a more realistic representation of physical transport processes involving particle diffusion and energy and momentum transport. In addition, it will be possible to guarantee that physically significant portions of complex physical systems, such as Lindblad resonances of galaxies or current sheets in magnetospheres, will have an adequate population of particles for a realistic simulation. Particle-mesh (PM) and particle-particle particle-mesh (P\(^3\)M) algorithms present the best prospects for the simulation of large-scale \(N\)-body systems. As an example we present a two-dimensional PM simulation of a disk galaxy that we have developed on the Connection Machine-2, a massively parallel boolean hypercube supercomputer. The code is scalable to any CM-2 configuration available and, on the largest configuration, simulations with \(N = 128\) \(M = 2^{27}\) particles are possible in reasonable run times.

MSC:

70-08 Computational methods for problems pertaining to mechanics of particles and systems
70F10 \(n\)-body problems
85A05 Galactic and stellar dynamics
76M28 Particle methods and lattice-gas methods
85-08 Computational methods for problems pertaining to astronomy and astrophysics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bertschinger, E., and Gelb, J.M. 1991. CosmologicalN-body simulations.Computers in Physics, 5:164-179.
[2] Binney, J., and Tremaine, S. 1987.Galactic Dynamics. Princeton Univ. Press, Princeton, N.J. · Zbl 1130.85301
[3] Boghosian, B.M. 1990. Computational physics on the Connection Machine.Computers in Physics, 4:14-33.
[4] Brunet, J.P., Edelman, A., and Mesirov, J.P. 1990. An optimal hypercube directN-body solver on the Connection Machine. InProc., Supercomputing 90, IEEE Comp. Soc. Press.
[5] Carlberg, R.G., and Freedman, W.L. 1985. Dissipative models of spiral galaxies.Astrophysical J., 298:486-492. · doi:10.1086/163634
[6] Carlberg, R.G., and Seilwood, J.A. 1985. Dynamical evolution in galactic disks.Astrophysical J., 292:79-89. · doi:10.1086/163134
[7] Comins, N.F. 1983. Stellar evolution inN-body simulations of disk galaxies.Astrophysical J., 274:595. · doi:10.1086/161473
[8] Comins, N.F. 1988. Three dimensional computer simulations of disk galaxy evolution. InProc., NASA-ASEE Ames Research Center Summer Faculty Fellows.
[9] Comins, N.F., and Schroeder, M. 1989. Long lived spiral waves inN-body simulations. InProc., Manchester Conf. on Galaxies (J. Sellwood, ed.), pp. 173-174.
[10] Eastwood, J.W., and Hockney, R.W. 1974. Shaping the force in two-dimensional particle-mesh models.J. Comp. Phys., 16:342-359. · doi:10.1016/0021-9991(74)90044-8
[11] Faber, S.M., and Gallagher, J.S. 1979. Masses and mass to light ratios of galaxies.Ann. Rev. Astron. Astroph., 17:135-138. · doi:10.1146/annurev.aa.17.090179.001031
[12] Hillis, D.C. 1985.The Connection Machine. MIT Press, Cambridge, Mass.
[13] Hockney, R.W., and Eastwood, J.W. 1988.Computer Simulations Using Particles. Adam Hilger, Bristol and New York. · Zbl 0662.76002
[14] Hohl, F. 1970. Computer models of spiral structure. InProc., Internat. Astronomical Union (I.A.U.) Symp., 38 pp. 368-372.
[15] Hohl, F. 1971. Numerical experiments with a disk of stars.Astrophysical J., 168:343-359. · doi:10.1086/151091
[16] Hohl, F. 1972. Evolution of a stationary disk of stars.J. Comp. Phys., 9:10-25. · doi:10.1016/0021-9991(72)90034-4
[17] Hohl, F. 1973. Relaxation time in disk galaxy simulations.Astrophysical J., 184:353-359. · doi:10.1086/152334
[18] Hohl, F. 1975.N-body simulations of disks. InProc., I.A.U. Symp., 69, p. 349.
[19] Hohl, F., and Hockney, R.W. 1969. A computer model of a disk of stars.J. Comp. Phys., 4:306-324. · doi:10.1016/0021-9991(69)90002-3
[20] Krall, N.A., and Trivelpiece, A. 1973.Principles of Plasma Physics. McGraw-Hill, New York.
[21] Lin, C.C., and Shu, F.H.-S. 1968. Density wave theory of spiral structure. InAstrophysics and General Relativity, vol. 2 (M. Chretien, S. Deser, and J. Goldstein, eds.), Gordon and Breach Science, New York, pp. 235-329.
[22] Makino, J., and Hut, P. 1989. GravitationalN-body algorithms: A comparison between supercomputers and a highly parallel computer.Computer Physics Reports, 9:199-246. · doi:10.1016/0167-7977(89)90003-8
[23] Miller, R.H. 1970. GravitationalN-body calculation in a discrete phase space.J. Comp. Phys., 6:449-472. · Zbl 0205.55101 · doi:10.1016/0021-9991(70)90042-2
[24] Miller, R.H. 1971. Numerical experiments in collisionless systems.Astrophysics and Space Science, 14:73-90. · doi:10.1007/BF00649196
[25] Miller, R.H. 1974. On the stability of a disk galaxy.Astrophysical J., 190:539-542. · doi:10.1086/152907
[26] Miller, R.H. 1976. Validity of disk galaxy simulations.J. Comp. Phys., 21:400-437. · doi:10.1016/0021-9991(76)90038-3
[27] Miller, R.H. 1978. On the stability of disk galaxies in massive halos.Astrophysical J., 224:32-38. · doi:10.1086/156346
[28] Miller, R.H., and Prendergast, K.H. 1968. Stellar dynamics in a discrete phase space.Astrophysical J., 151:699-709. · doi:10.1086/149469
[29] Miller, R.H., and Smith, B.F. 1979a. Dynamics of a stellar bar.Astrophysical J., 227:785-797. · doi:10.1086/156787
[30] Miller, R.H., and Smith, B.F. 1979b. Predominance of two armed spirals.Astrophysical J., 207:408-413. · doi:10.1086/154508
[31] Miller, R.H., and Smith, B.F. 1981a. Collapses of stellar protogalaxies from aspherical initial conditions.Astrophysical J., 244:33-39. · doi:10.1086/158681
[32] Miller, R.H., and Smith, B.F. 1981b. Numerical experiments on galaxy formation: I. Introduction and first results.Astrophysical J., 244:467-475. · doi:10.1086/158723
[33] Miller, R.H., Prendergast, K.H., and Quirk, W.J. 1970. Numerical experiments on spiral structure.Astrophysical J., 161:903-916. · doi:10.1086/150593
[34] Montgomery, D.C., and Tidman, D.A. 1964.Plasma Kinetic Theory. McGraw-Hill, New York. · Zbl 0113.46006
[35] Ostriker, J.R., and Peebles, P.J.E. 1973. A numerical study of the stability of flattened galaxies: Or can cold disks survive?Astrophysical J., 186:467-480. · doi:10.1086/152513
[36] Rapaport, D.C. 1991.Comp. Phys. Comm., 62:198. · doi:10.1016/0010-4655(91)90095-3
[37] Schroeder, M. 1989. A CombinedN-body and hydrodynamics code for modeling disk galaxies. Ph.D. thesis, Univ. of Maine, Orono.
[38] Schroeder, M., and Comins, N.F. 1986. The gravitational interaction betweenN-body (star clusters) and hydrodynamic (ISM) codes in disk galaxy simulations. InThe Use of Super-computers in Stellar Dynamics (P. Hut and S. McMillan, eds.), Springer-Verlag.
[39] Schroeder, M., and Comins, N.F. 1989. Relaxation times in two-dimensional galaxy simulations.Astrophysical J., 346:108-117. · doi:10.1086/167988
[40] Sellwood, J.A. 1981. Bar instability and rotation curves.Astron. and Astrophys., 99:362-374.
[41] Sellwood, J.A. 1987. The art ofN-body building.Ann. Rev. Astron. Astroph., 25:151-186. · doi:10.1146/annurev.aa.25.090187.001055
[42] Sellwood, J.A., and Carlberg, R.G. 1984. Spiral instabilities provoked by accretion and star formation.Astrophysical J., 282:61-74. · doi:10.1086/162176
[43] Tamayo, P., Mesirov, J.P., and Boghosian, B.M. 1991. Parallel approaches to short range molecular dynamics simulations. InProc., Supercomputing 91, IEEE Comp. Soc. Press.
[44] Thinking Machines. 1991. CM-FORTRAN optimization notes: Slicewise model. Thinking Machines Corp., Cambridge, Mass.
[45] Thomasson, M., Elmegreen, B.G., Donner, K.J., Sundelius, B. 1990. A computer-generated galaxy model with long-lived two-armed spiral structure.Astrophysical J. Letters, 356:L9-L14. · doi:10.1086/185739
[46] Toomre, A. 1964. On the gravitational stability of a disk of stars.Astrophysical J., 139:1217-1238. · doi:10.1086/147861
[47] White, R.L. 1988. Noise and relaxation in simulations of a disk of stars.Astrophysical J., 330:26-37. · doi:10.1086/166452
[48] Zhao, F., and Johansson, S.L. 1991. The parallel multipole method on the Connection Machine.SIAM J. Sci. Stat. Comput., 12:1420-1437. · Zbl 0732.70001 · doi:10.1137/0912077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.