zbMATH — the first resource for mathematics

Practical issues in the implementation of self-tuning control. (English) Zbl 0546.93050
Considerable theoretical work has been done recently in the area of adaptive systems in general and of self-tuning controllers in particular. Many successful practical applications have been completed in recent years. However, there is a clear need for more insight into the aspects of practical implementations of adaptive regulators. The purpose of this paper is to present different types of ”safety-nets” and ”special tricks” that have been often used to make self-tuning controllers work in practice. The following problems are discussed: robust control design, robust estimation, signal conditioning, estimator wind-up, start-up procedures, reset action, and choice of parameters in self-tuning regulators.
Reviewer: P.Stoica

93C40 Adaptive control/observation systems
93B35 Sensitivity (robustness)
93E10 Estimation and detection in stochastic control theory
93B50 Synthesis problems
62F35 Robustness and adaptive procedures (parametric inference)
93B40 Computational methods in systems theory (MSC2010)
93E25 Computational methods in stochastic control (MSC2010)
Full Text: DOI
[1] Allidina, A.Y.; Hughes, F.M., Self-tuning controller with integral action, Opt. control appl. meth., 3, 355-362, (1982) · Zbl 0498.93034
[2] Åström, K.J., ()
[3] Åström, K.J., Design principles for self-tuning regulators, () · Zbl 0945.93561
[4] Åström, K.J., Robustness of a design method based on assignment of poles and zeros, IEEE trans aut. control, AC-25, 588-591, (1980) · Zbl 0432.93018
[5] Åström, K.J., Theory and applications of adaptive control—a survey, Automatica, 19, 471-486, (1983) · Zbl 0537.93048
[6] Åström, K.J., Analysis of rohrs’ counterexamples to adaptive control, (), 982-987
[7] Åström, K.J.; Bohlin, T., Numerical identification of linear dynamic systems from normal operating records, () · Zbl 0156.40801
[8] Åström, K.J.; Borisson, U.; Ljung, L.; Wittenmark, B., Theory and applications of self-tuning regulators, Automatica, 13, 457-476, (1977) · Zbl 0374.93024
[9] Åström, K.J.; Hägglund, T., Automatic tuning of simple regulators with specifications on phase and amplitude margins, Automatica, 20, (1984) · Zbl 0543.93039
[10] Åström, K.J.; Wittenmark, B., On self-tuning regulators, Automatica, 9, 185-199, (1973) · Zbl 0249.93049
[11] Åström, K.J.; Wittenmark, B., Self-tuning controllers based on pole-zero placement, (), 120-130
[12] Åström, K.J.; Wittenmark, B., ()
[13] Åström, K.J.; Zhao-Ying, Z., A linear quadratic Gaussian self-tuner, () · Zbl 0572.93045
[14] Bengtsson, G., Industrial experience with a microcomputer based self-tuning regulator, ()
[15] Bierman, G.J., ()
[16] Clarke, D.W., Model following and pole-placement self-tuners, Opt. control appl. meth., 3, 323-335, (1982) · Zbl 0499.93038
[17] Clarke, D.W.; Gawthrop, P.J., Implementation and application of microprocessor based self-tuners, (), 197-208
[18] Doyle, J.C.; Stein, G., Multivariable feedback design: concepts for a classical/modern synthesis, IEEE trans aut. control, AC-26, 4-16, (1981) · Zbl 0462.93027
[19] Egardt, B., Lecture notes in control and information sciences, (), 20
[20] Egardt, B., Stability analysis of continuous-time adaptive control systems, SIAM J. control optimiz., 18, 540-557, (1980) · Zbl 0499.93050
[21] Fortescue, T.R.; Kershenbaum, L.S.; Ydstie, B.E., Implementation of self-tuning regulators with variable forgetting factors, Automatica, 17, 831-835, (1981)
[22] Gawthrop, P.J.; Lim, K.W., Robustness of self-tuning controllers, (), 21-29
[23] Goodwin, G.C.; Ramadge, P.J.; Caines, P.E., Discrete multivariable adaptive control, IEEE trans aut. control, AC-25, 449-456, (1980) · Zbl 0429.93034
[24] Horowitz, I.M., ()
[25] Hägglund, T., New estimation techniques for adaptive control, ()
[26] Irving, E., Improving power network stability and unit stress with adaptive generator control, Automatica, 15, 31-46, (1979) · Zbl 0408.93024
[27] Källström, C.G.; Åström, K.J.; Thorell, N.E.; Eriksson, J.; Sten, L., Adaptive autopilots for tankers, Automatica, 15, 241-254, (1979)
[28] Ljung, L.; Söderström, T., ()
[29] MacGregor, J.F., Optimal choice of the sampling interval for discrete process control, Technometrics, 18, 151-160, (1976) · Zbl 0336.62080
[30] Mannerfelt, C.F., Robust control design with simplified models, ()
[31] Morse, A.S., Global stability of parameter adaptive control systems, IEEE trans aut. control, AC-25, 433-439, (1980) · Zbl 0438.93042
[32] Narendra, K.S.; Lin, Y.H.; Valavani, L.S., Stable adaptive control design, IEEE trans aut. control, AC-25, 440-448, (1980) · Zbl 0467.93049
[33] Peterson, B.B.; Narendra, K.S., Bounded error adaptive control, IEEE trans aut. control, AC-27, 1161-1168, (1982) · Zbl 0497.93026
[34] Rohrs, C.E.; Valavani, L.; Athans, M.; Stein, G., Analytical verification of undesirable properties of direct model reference adaptive control algorithms, (), 1271-1284
[35] Rohrs, C.E.; Valavani, L.; Athans, M.; Stein, G., Robustness of adaptive control algorithms in the presence of unmodelled dynamics, (), 3-11
[36] Söderström, T.; Lennartson, B., On linear optimal control with infrequent output sampling, () · Zbl 0506.93071
[37] Wellstead, P.E.; Sanoff, S.P., Extended self-tuning algorithm, Int. J. control, 34, 433-455, (1981)
[38] Wellstead, P.E.; Zanker, P., Techniques of self-tuning, Opt. control appl. meth., 3, 305-322, (1982) · Zbl 0518.93039
[39] Wittenmark, B.; Åström, K.J., Implementation aspects of adaptive controllers and their influence on robustness, () · Zbl 0217.57903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.