×

zbMATH — the first resource for mathematics

Performance improvements of self-tuning controllers by multistep horizons: The MUSMAR approach. (English) Zbl 0577.93039
This paper contains a review of the multistep multivariable adaptive regulator (MUSMAR) approach to adaptive regulation. Multivariable linear systems and quadratic cost functionals, defined over an horizon of arbitrary length, are considered. Preliminary theoretical results are presented, showing that the MUSMAR has some advantages over adaptive regulators of similar computational complexity. A large number of simulated and real-life numerical applications are included to demonstrate the potential advantages of the MUSMAR.
Reviewer: P.Stoica

MSC:
93C40 Adaptive control/observation systems
93C35 Multivariable systems, multidimensional control systems
93E25 Computational methods in stochastic control (MSC2010)
65C99 Probabilistic methods, stochastic differential equations
68Q25 Analysis of algorithms and problem complexity
93E10 Estimation and detection in stochastic control theory
93C05 Linear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Åström, K.J., Self-tuning regulators — design principles and applications, (), 1-68
[2] Åström, K.J., Direct methods for nonminimum phase systems, (), 611-615
[3] Åström, K.J.; Borisson, U.; Ljung, L.; Wittenmark, B., Theory and applications of self-tuning regulators, Automatica, 13, 457-476, (1977) · Zbl 0374.93024
[4] Åström, K.J.; Wittenmark, B., On self-tuning regulator, Automatica, 9, 185-199, (1973) · Zbl 0249.93049
[5] Åström, K.J.; Zhao-Ying, Z., A linear quadratic Gaussian self-tuner, (), 1-20 · Zbl 0572.93045
[6] Bierman, G.J., ()
[7] Borisson, U., Self-tuning regulators for a class of multivariable systems, (), 420-429
[8] Bruno, G.; Carelli, R.; Greco, C.; Delpiano, V.; Tomagnone, M., Experience with adaptive control of a robot arm, (), 98-102
[9] Carelli, R.; Greco, C., Adaptive control techniques: the case study of an industrial robot manipulator, Politecnico di Torino, Torino, Italy, (1982), TR-5/82
[10] Casini, M.; Zappa, G., BAMOP iterations for a second-order system, ()
[11] Clarke, D.W., Introduction to self-tuning controllers, (), 36-165 · Zbl 0524.93041
[12] Clarke, D.W.; Gawthrop, P.J., Self-tuning controller, (), 929-934 · Zbl 0507.93048
[13] Clarke, D.W.; Gawthrop, P.J., Self-tuning control, (), 633-640 · Zbl 0507.93048
[14] Goodwin, G.C.; Johnson, C.R.; Sin, K.S., Global convergence for adaptive one-step-ahead optimal controllers based on input matching, IEEE trans. aut. control, AC-26, 1269-1273, (1981) · Zbl 0481.93042
[15] Goodwin, G.C.; Ramadge, P.J., Design of restricted complexity adaptive regulators, IEEE trans. aut. control, AC-24, 584-588, (1979) · Zbl 0412.93047
[16] Goodwin, G.C.; Ramadge, P.J.; Caines, P.E., Discrete-time multivariable adaptive control, IEEE trans. aut. control, AC-25, 449-456, (1980) · Zbl 0429.93034
[17] Goodwin, G.C.; Sin, K.S.; Saluja, K.K., Stochastic adaptive control and prediction—the general delay-colored noise case, IEEE trans. aut. control, AC-25, 946-950, (1980) · Zbl 0456.93036
[18] Hewer, G.A., An iterative technique for the computation of the steady state gains for the discrete time optimal regulator, IEEE trans. aut. control, AC-16, 382-384, (1971)
[19] Kleinman, D.L., On an iterative technique for Riccati equation computation, IEEE trans. aut. control, AC-13, 114-115, (1968)
[20] Koivo, N.H., A multivariable self-tuning controller, Automatica, 16, 351-356, (1980) · Zbl 0447.93034
[21] Kreisselmeier, G., On adaptive state regulation, IEEE trans. aut. control, AC-27, 3-17, (1982) · Zbl 0476.93045
[22] Kwon, E.W.; Pearson, A.E., A modified quadratic cost problem and feedback stabilization of a linear system, IEEE trans. aut. control, AC-22, 838-842, (1977) · Zbl 0372.93037
[23] Landau, I.D., ()
[24] Ljung, L., On positive real transfer functions and the convergence of some recursive schemes, IEEE trans. aut. control, AC-22, 539-551, (1977) · Zbl 0361.93063
[25] Manfredi, C., U-D implementation of the MUSMAR algorithm, ()
[26] Manfredi, C.; Mosca, E.; Zappa, G., Multivariable adaptive prediction by MUSMAR techniques, (), 161-164
[27] Menga, G.; Mosca, E., MUSMAR: multivariable adaptive regulators based on multistep cost functionals, (), 334-341
[28] Moden, P.E.; Söderström, T., Stationary performance of linear stochastic systems under single step optimal control, IEEE trans. aut. control, AC-27, 214-216, (1982) · Zbl 0471.93070
[29] Morse, A.S., Global stability of parameter adaptive control systems, IEEE trans. aut. control, AC-25, 433-439, (1980) · Zbl 0438.93042
[30] Mosca, E., Multivariable adaptive regulators based on multistep cost functionals, (), 196-204
[31] Mosca, E.; Zappa, G., MUSMAR: basic convergence and consistency properties, (), 189-199
[32] Mosca, E.; Zappa, G., A robust adaptive control algorithm for microcomputer based implementation, Control computers, 10, 55-56, (1982)
[33] Mosca, E.; Zappa, G., Overparametrization, positive realness and multistep minimum-variance adaptive regulators, (), 187-215
[34] Mosca, E.; Zappa, G., An MV adaptive controller for plants with time-varying i/o transport delay, ()
[35] Mosca, E.; Zappa, G., Removal of a positive realness condition in minimum-variance adaptive regulators by multistep horizon, IEEE trans. aut. control, AC-29, (1984), (in press) · Zbl 0543.93042
[36] Narendra, K.S.; Lin, Y.H.; Valavani, L.S., Stable adaptive controller design — part II: proof of stability, IEEE trans. aut. control, AC-25, 440-448, (1980) · Zbl 0467.93049
[37] Peterka, V., On steady-state minimum variance control strategy, Kybernetica, 8, 219-231, (1972) · Zbl 0256.93070
[38] Peterka, V., Predictor-based self-tuning control, Automatica, 20, 39-50, (1984) · Zbl 0539.93054
[39] Peterka, V.; Åström, K.J., Control of multivariable systems with unknown but costant parameters, () · Zbl 0315.93020
[40] Zappa, G., Local convergence of minimum-variance multistep adaptive regulators, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.