×

Hierarchical Bayesian bivariate disease mapping: analysis of children and adults asthma visits to hospital. (English) Zbl 1514.62900

Summary: In spatial epidemiology, detecting areas with high ratio of disease is important as it may lead to identifying risk factors associated with disease. This in turn may lead to further epidemiological investigations into the nature of disease. Disease mapping studies have been widely performed with considering only one disease in the estimated models. Simultaneous modelling of different diseases can also be a valuable tool both from the epidemiological and also from the statistical point of view. In particular, when we have several measurements recorded at each spatial location, one can consider multivariate models in order to handle the dependence among the multivariate components and the spatial dependence between locations. In this paper, spatial models that use multivariate conditionally autoregressive smoothing across the spatial dimension are considered. We study the patterns of incidence ratios and identify areas with consistently high ratio estimates as areas for further investigation. A hierarchical Bayesian approach using Markov chain Monte Carlo techniques is employed to simultaneously examine spatial trends of asthma visits by children and adults to hospital in the province of Manitoba, Canada, during 2000–2010.

MSC:

62-XX Statistics

Software:

spBayes; R; BUGS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. Banerjee, B.P. Carlin, and A.E. Gelfand, Hierarchical Modeling and Analysis for Spatial Data, Chapman and Hall/CRC, London/Boca Raton, FL, 2004. · Zbl 1053.62105
[2] J. Besag, J. York, and A. Molliè, Bayesian image restoration, with two applications in spatial statistics, Ann. Inst. Statist. Math. 43 (1991), pp. 1-21. doi: 10.1007/BF00116466 · Zbl 0760.62029 · doi:10.1007/BF00116466
[3] S. Brooks and A. Gelman, General methods for monitoring convergence of iterative simulations, J. Comput. Graph. Statist. 7 (1998), pp. 434-455.
[4] R. Garner and D. Kohen, Changes in the prevalence of childhood asthma, Health Reports 2008, catalogue 82-003-X, Statistics Canada.
[5] A.E. Gelfand and A.F.M. Smith, Sampling-based approaches to calculating marginal densities, J. Amer. Statist. Assoc. 85 (1990), pp. 398-409. doi: 10.1080/01621459.1990.10476213 · Zbl 0702.62020
[6] A.E. Gelfand and P. Vounatsou, Proper multivariate conditional autoregressive models for spatial data analysis, Biostatistics 4 (2003), pp. 11-25. · Zbl 1142.62393
[7] A. Gelman, Prior distributions for variance parameters in hierarchical models, Bayesian Anal. 1 (2006), pp. 515-533. doi: 10.1214/06-BA117A · Zbl 1331.62139 · doi:10.1214/06-BA117A
[8] A. Gelman and D.B. Rubin, Inference from iterative simulation using multiple sequences (with discussion), Statist. Sci. 7 (1992), pp. 457-511. doi: 10.1214/ss/1177011136 · Zbl 1386.65060 · doi:10.1214/ss/1177011136
[9] F.P. Greco and C. Trivisano, A multivariate CAR model for improving the estimation of relative risks, Statist. Med. 28 (2009), pp. 1707-1724. doi: 10.1002/sim.3577 · doi:10.1002/sim.3577
[10] P. Heidelberger and P. Welch, Simulation run length control in the presence of an initial transient, Oper. Res. 31 (1983), pp. 1109-1144. doi: 10.1287/opre.31.6.1109 · Zbl 0532.65097 · doi:10.1287/opre.31.6.1109
[11] X. Jin, S. Banerjee, and B.P. Carlin, Order-free co-regionalized areal data models with application to multiple-disease mapping, J. R. Stat. Soc. Ser. B 69 (2007), pp. 817-838. doi: 10.1111/j.1467-9868.2007.00612.x · Zbl 07555376 · doi:10.1111/j.1467-9868.2007.00612.x
[12] X. Jin, B.P. Carlin, and S. Banerjee, Generalized hierarchical multivariate CAR models for areal data, Biometrics 61 (2005), pp. 950-961. doi: 10.1111/j.1541-0420.2005.00359.x · Zbl 1087.62127 · doi:10.1111/j.1541-0420.2005.00359.x
[13] H. Kim and J. Mazza, Asthma, Allergy Asthma Clin. Immunol. 7(Suppl 1) (2011), S2. doi: 10.1186/1710-1492-7-S1-S2. · doi:10.1186/1710-1492-7-S1-S2
[14] H. Kim, D. Sun, and R.K. Tsutakawa, A bivariate Bayes method for improving the estimates of mortality rates with a twofold conditional autoregressive model, J. Amer. Statist. Assoc. 96 (2001), pp. 1506-1521. doi: 10.1198/016214501753382408 · Zbl 1051.62112
[15] D. Lunn, D. Spiegelhalter, A. Thomas, and N. Best, The BUGS project: Evolution, critique, and future directions, Stat. Med. 28 (2009), pp. 3049-3067. doi: 10.1002/sim.3680 · doi:10.1002/sim.3680
[16] W.J. Millar and B.H. Gerry, Childhood asthma, Health Rep. 10(3) (1998), pp. 12. Statistics Canada.
[17] C. Pascutto, J.C. Wakefield, N.G. Best, S. Richarson, L. Bernardinelli, A. Staines, and P. Elliott, Statistical issues in the analysis of disease mapping data, Stat. Med. 19 (2000), pp. 2493-2519. doi: 10.1002/1097-0258(20000915/30)19:17/18<2493::AID-SIM584>3.0.CO;2-D · doi:10.1002/1097-0258(20000915/30)19:17/18<2493::AID-SIM584>3.0.CO;2-D
[18] R Development Core Team: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available at http://www.R-project.org, 2012.
[19] G.L. Silva, C.B. Dean, T. Niyonsenga, and A. Vanasse, Hierarchical Bayesian spatiotemporal analysis of revascularization odds using smoothing splines, Stat. Med. 27 (2008), pp. 2381-2401. doi: 10.1002/sim.3094 · doi:10.1002/sim.3094
[20] B.J. Smith, BOA User Manual (version 1.1.7), Department of Biostatistics, College of Public Health, University of Iowa, Ames, 2007.
[21] M. Torabi, Hierarchical Bayes estimation of spatial statistics for rates, J. Statist. Plann. Inference 142 (2012), pp. 358-365. doi: 10.1016/j.jspi.2011.07.026 · Zbl 1232.62050 · doi:10.1016/j.jspi.2011.07.026
[22] M. Torabi, Spatial modeling using frequentist approach for disease mapping, J. Appl. Statist. 39 (2012), pp. 2431-2439. doi: 10.1080/02664763.2012.711814 · Zbl 1514.62272
[23] M. Torabi and R.J. Rosychuk, Hierarchical Bayesian spatio-temporal analysis of childhood cancer trends, J. Geogr. Anal. 44 (2012), pp. 109-120. doi: 10.1111/j.1538-4632.2012.00839.x · doi:10.1111/j.1538-4632.2012.00839.x
[24] M. Torabi and F. Shokoohi, Hierarchical Bayes estimation in small area estimation using cross-sectional and time-series data, J. Statist. Comput. Simul., preprint (2013), doi: 10.1080/00949655.2012.721365. · Zbl 1453.62326
[25] World Health Organization, Global Surveillance, Prevention and Control of Chronic Respiratory Diseases: A Comprehensive Approach, WHO, Geneva, Switzerland, 2007.
[26] Y. Zhang, J.S. Hodges, and S. Banerjee, Smoothed ANOVA with spatial effects as a competitor to MCAR in multivariate spatial smoothing, Annals. Appl. Statist. 4 (2009), pp. 1805-1830. doi: 10.1214/09-AOAS267 · Zbl 1184.62126 · doi:10.1214/09-AOAS267
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.