×

A general additive-multiplicative rates model for recurrent and terminal events. (English) Zbl 1338.62076

Summary: Recurrent events data with a terminal event (e.g. death) often arise in clinical and observational studies. Most of existing models assume multiplicative covariate effects and model the conditional recurrent event rate given survival. In this article, we propose a general additive-multiplicative rates model for recurrent event data in the presence of a terminal event, where the terminal event stop the further occurrence of recurrent events. Based on the estimating equation approach and the inverse probability weighting technique, we propose two procedures for estimating the regression parameters and the baseline mean function. The asymptotic properties of the resulting estimators are established. In addition, some graphical and numerical procedures are presented for model checking. The finite-sample behavior of the proposed methods is examined through simulation studies, and an application to a bladder cancer study is also illustrated.

MSC:

62G05 Nonparametric estimation
62N01 Censored data models
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andersen, P.K., Gill, R.D. Cox’s regression model for counting processes: a large sample study. Ann. Stat., 10: 1100-1120 (1982) · Zbl 0526.62026 · doi:10.1214/aos/1176345976
[2] Breslow, N.E. Covariance analysis of censored survival data. Biometrics 30: 89-99 (1974) · doi:10.2307/2529620
[3] Byar, D.P. The Veterans Administration study of chemoprophylaxis for recurrent stage I bladder tumors: comparisons of placebo, pyridoxine and topical thiotepa. In: Pavone-Macaluso M, Smith PH, Edsmyr F (eds) Bladder tumors and other topics in urological oncology, PLenum, NY, 1980, 363-370 · Zbl 0995.62107
[4] Chang, S.H., Wang, M.C. Conditional regression analysis for recurrence time data. J. Am. Stat. Assoc., 94: 1221-1230 (1999) · Zbl 0998.62082 · doi:10.1080/01621459.1999.10473875
[5] Cook, R.J., Lawless, J.F. Marginal analysis of recurrent events and a terminating event. Stat. Med. 16: 911-924 (1997) · doi:10.1002/(SICI)1097-0258(19970430)16:8<911::AID-SIM544>3.0.CO;2-I
[6] Cook, R.J., Lawless, J.F. The statistical analysis of recurrent events. Springer-Verlag, New York, 2007 · Zbl 1159.62061
[7] Cox, D.R. Partial likelihood. Biometrika, 62: 269-276 (1975) · Zbl 0312.62002 · doi:10.1093/biomet/62.2.269
[8] Ghosh, D, Lin, D.Y. Nonparametric analysis of recurrent events and death. Biometrics, 56: 554-562 (2000) · Zbl 1060.62614 · doi:10.1111/j.0006-341X.2000.00554.x
[9] Ghosh, D, Lin, D.Y. Marginal regression models for recurrent and terminal events. Stat. Sin., 12: 663-688 (2002) · Zbl 1005.62084
[10] Huang, C.Y., Wang, M.C. Joint modeling and estimation of recurrent event processes and failure time. J. Am. Stat. Assoc., 99: 1153-1165 (2004) · Zbl 1055.62108 · doi:10.1198/016214504000001033
[11] Kalbfleisch, J.D., Prentice, R.L. The statistical analysis of failure time data, 2nd end. Wiley, New York, 2002 · Zbl 1012.62104 · doi:10.1002/9781118032985
[12] Lawless, J.F., Nadeau, C. Some simple robust methods for the analysis of recurrent events. Technometrics, 37: 158-168 (1995) · Zbl 0822.62085 · doi:10.1080/00401706.1995.10484300
[13] Lee, E.W., Wei, L.J., Amato, D.A. Cox-type regression analysis for large numbers of small groups of correlated failure time observations. In: Survival analysis: state of the art. Klein JP, Goel PK (eds), Kluwer Academic Publishers, Dordrecht, 237-247, 1992 · Zbl 0850.62845
[14] Liang, K.Y., Zeger, S.L. Longitudinal data analysis using generalized linear models. Biometrika 73: 13-22 (1986) · Zbl 0595.62110 · doi:10.1093/biomet/73.1.13
[15] Lin, D.Y., Wei, L.J., Yang, I, Ying, Z. Semiparametric regression for the mean and tate functions of recurrent events. J. Roy. Stat. Soc. (Ser. B), 62: 711-730 (2000) · Zbl 1074.62510 · doi:10.1111/1467-9868.00259
[16] Lin, D.Y., Wei, L.J., Ying, Z. Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika, 80: 557-572 (1993) · Zbl 0788.62094 · doi:10.1093/biomet/80.3.557
[17] Liu, L., Wolfe, R.A., Huang, X. Shared frailty models for recurrent events and a terminal event. Biometrics 60: 747-756 (2004) · Zbl 1274.62827 · doi:10.1111/j.0006-341X.2004.00225.x
[18] Murphy, S.A. Asymptotic theory for the frailty model. Ann. Stat. 23: 182-198 (1995) · Zbl 0822.62069 · doi:10.1214/aos/1176324462
[19] Nielsen, G.G., Gill, R.D., Andersen, P.K., Sorensen, TIA. A counting process approach to maximum likelihood estimation in frailty models. Scand. J. Stat. 19: 25-43 (1992) · Zbl 0747.62093
[20] Pepe, M.S., Cai, J. Some graphical displays and marginal regression analyses for recurrent failure times and time-dependent covariate. J. Am. Stat. Assoc., 88: 811-820 (1993) · Zbl 0794.62074 · doi:10.1080/01621459.1993.10476346
[21] Pollard, D. Empirical processes: theory and applications. Institute of Mathematical Statistics, Hayward, 1990 · Zbl 0741.60001
[22] Prentice, R.L., Williams, B.J., Peterson, A.V. On the regression analysis of multivariate failure time data. Biometrika, 68: 373-379 (1981) · Zbl 0465.62100 · doi:10.1093/biomet/68.2.373
[23] Schaubel, D.E., Zeng, D.L., Cai, J.W. A semiparametric additive rates model for recurrent event data. Lifetime Data Anal., 12: 389-406 (2006) · Zbl 1109.62110 · doi:10.1007/s10985-006-9017-x
[24] Schoenfeld, D. Partial residuals for the proportional hazards regression model. Biometrika, 69: 239-241 (1982) · doi:10.1093/biomet/69.1.239
[25] Sun, J.G., Wei, L.J. Regression analysis of panel count data with covariate dependent observation and censoring times. J. Roy. Stat. Soc. (Ser. B), 62: 293-302 (2000) · doi:10.1111/1467-9868.00232
[26] Therneau, T.M., Grambsch, P.M., Fleming, T.R. Martingale-based residuals for survival models. Biometrika, 77: 147-160 (1990) · Zbl 0692.62082 · doi:10.1093/biomet/77.1.147
[27] van der Vaart, A.W. Asymptotic statistics. Melbourne, Cambridge, 2000 · Zbl 0910.62001
[28] van der Vaart, A.W., Wellner, J.A. Weak convergence and empirical processes. Springer-Verlag, New York, 1996 · Zbl 0862.60002 · doi:10.1007/978-1-4757-2545-2
[29] Wei, L.J., Lin, D.Y., Weissfeld, L. Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J. Am. Stat. Assoc. 84: 1065-1073 (1989) · doi:10.1080/01621459.1989.10478873
[30] Ye, Y.N., Kalbfleisch, J.D., Schaubel, D.E. Semiparametric analysis of correlated recurrent and terminal events. Biometrics 63: 78-87 (2007) · Zbl 1124.62083 · doi:10.1111/j.1541-0420.2006.00677.x
[31] Zeng, D., Lin, D.Y. Efficient estimation of semiparametric transformation models for counting processes. Biometrika, 93: 627-640 (2006) · Zbl 1108.62083 · doi:10.1093/biomet/93.3.627
[32] Zeng, D., Lin, D.Y. Semiparametric transformation models with random effects for recurrent events. J. Am. Stat. Assoc., 102: 167-180 (2007) · Zbl 1284.62244 · doi:10.1198/016214506000001239
[33] Zhang, Y. A semiparametric pseudolikelihood estimation method for panel count data. Biometrika 89: 39-48 (2002) · Zbl 0995.62107 · doi:10.1093/biomet/89.1.39
[34] Zhao, H, Zhou, J, Sun, L.Q. A marginal additive rates model for recurrent event data with a terminal event. Communications in Statistics-theory and Methods, 42: 2567-2583 (2013) · Zbl 1275.62045 · doi:10.1080/03610926.2011.626548
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.