×

A free boundary problem for Aedes aegypti mosquito invasion. (English) Zbl 1443.92035

Summary: An advection-reaction-diffusion model with free boundary is proposed to investigate the invasive process of Aedes aegypti mosquitoes. By analyzing the free boundary problem, we show that there are two main scenarios of invasive regime: vanishing regime or spreading regime, depending on a threshold in terms of model parameters. Once the mortality rate of the mosquito becomes large with a small specific rate of maturation, the invasive mosquito will go extinct. By introducing the definition of asymptotic spreading speed to describe the spreading front, we provide an estimate to show that the boundary moving speed cannot be faster than the minimal traveling wave speed. By numerical simulations, we consider that the mosquitoes invasive ability and wind driven advection effect on the boundary moving speed. The greater the mosquito invasive ability or advection, the larger the boundary moving speed. Our results indicate that the mosquitoes asymptotic spreading speed can be controlled by modulating the invasive ability of winged mosquitoes.

MSC:

92-10 Mathematical modeling or simulation for problems pertaining to biology
35B35 Stability in context of PDEs
35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lounibos, L. P., Invasions by insect vectors of human disease, Ann. Rev. Entomol., 47, 233-266 (2002)
[2] Carbajo, A. E.; Schweigmann, N.; Curto, S. I.; de Garín, A.; Bejarán, R., Dengue transmission risk maps of argentina, Trop. Med. Int. Health, 6, 170-183 (2001)
[3] Cummings, D. A.T.; Irizarry, R. A.; Huang, N. E.; Endy, T. P.; Nisalak, A.; Ungchusak, K.; Burke, D. S., Travelling waves in the occurrence of dengue haemorrhagic fever in thailand, Nature, 427, 344-347 (2004)
[4] Gubler, D. J., Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century, Trends Microbiol., 10, 100-103 (2002)
[5] WHO, Dengue hemorrhagic fever: diagnosis, treatment, prevention and control (1998), World Health Organization: World Health Organization Ginebra, Suiza
[6] WHO, Dengue and dengue hemorrhagic fever (2002), World Health Organization: World Health Organization Ginebra, Suiza
[7] Fischer, M.; Staples, J. E., Notes from the field: chikungunya virus spreads in the americas-caribbean and south america, 2013-2014, MMWR Morb. Mortal. Wkly. Report, 63, 500 (2014)
[9] Cauchemez, S.; Ledrans, M.; Poletto, C.; Quenel, P.; De Valk, H.; Colizza, V.; Boëlle, P. Y., Local and regional spread of chikungunya fever in the americas, Euro Surveill., 19, 20854 (2014)
[11] Cao-Lormeau, V. M.; Roche, C.; Teissier, A., Zika virus, french polynesia, south pacific, Emerg. Infect. Dis., 20, 1084-1086 (2013)
[12] Fauci, A. S.; Morens, D. M., Zika virus in the americas - yet another arbovirus threat, New Eng. J. Med., 374, 601-604 (2016)
[13] Gao, D.; Lou, Y.; He, D.; Porco, T. C.; Kuang, Y.; Chowell, G.; Ruan, S., Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: A mathematical modeling analysis, Sci. Rep., 6, 28070 (2016)
[14] Hayes, E. B., Zika virus outside africa, Emerg. Infect. Dis., 15, 1347-1350 (2009)
[15] Hennessey, M.; Fischer, M.; Staples, J. E., Zika virus spreads to new areas - region of the Americas, MMWR Morb. Mortal. Wkly. Rep., 65, 55-58 (2016)
[16] Takahashi, L. T.; Maidana, N. A.; Ferreira, W. C.; Pulino, P.; Yang, H. M., Mathematical models for the Aedes aegyptidispersal dynamics: travelling waves by wing and wind, Bull. Math. Biol., 67, 509-528 (2005) · Zbl 1334.92370
[17] Du, Y. H.; Lin, Z. G., Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42, 377-405 (2010) · Zbl 1219.35373
[19] Ge, J.; Kim, K. I.; Lin, Z.; Zhu, H., A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differ. Equ., 259, 5486-5509 (2015) · Zbl 1341.35171
[20] Lei, C.; Lin, Z.; Zhang, Q., The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differ. Equ., 257, 145-166 (2014) · Zbl 1286.35274
[21] Tarboush, A. K.; Lin, Z.; Zhang, M., Spreading and vanishing in a west nile virus model with expanding fronts, Sci. China Math., 60 (2017) · Zbl 1365.35186
[22] Ahn, I.; Baek, S.; Lin, Z., The spreading fronts of an infective environment in a man-environment-man epidemic model, Appl. Math. Model., 40, 7082-7101 (2016) · Zbl 1471.92278
[23] Guo, J. S.; Wu, C. H., On a free boundary problem for a two-species weak competition system, J. Dyn. Differ. Equ., 24, 873-895 (2012) · Zbl 1263.35132
[24] Lin, Z. G., A free boundary problem for a predator-prey model, Nonlinearity, 20, 1883-1892 (2007) · Zbl 1126.35111
[25] Wang, M.; Zhao, J., A free boundary problem for the predator-prey model with double free boundaries, J. Dyn. Differ. Equ., 1-23 (2015)
[26] Petrovskii, S.; Morozova, A.; Li, B., Regimes of biological invasion in a predator-prey system with the allee effect, Bull. Math. Biol., 67, 637-661 (2005) · Zbl 1334.92363
[27] Pao, C. V., Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions, J. Math. Anal. Appl., 195, 702-718 (1995) · Zbl 0851.35063
[28] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036
[29] Smith, H., An Introduction to Delay Differential Equations with Applications to the Life Sciences (2010), Springer: Springer New York
[30] Razvan, S.; Gabriel, D., Numerical approximation of a free boundary problem for a predator-prey model, Numer. Anal. Appl., 5434, 548-555 (2009) · Zbl 1233.65050
[31] Vasconcelos, P. F.C.; Rosa, A. P.A. T.; Pinheiro, F. P.; Rodrigues, S. G.; Rosa, E. S.T.; Cruz, A. C.R.; Rosa, J. F.S. T., Aedes aegypti, dengue and re-urbanization of yellow fever in brazil and other south american countries-past and present situation and future perspectives, Dengue Bull., 23, 55-66 (1999)
[32] Oteroa, M.; Schweigmann, N.; Solaria, H. G., A stochastic spatial dynamical model for Aedes aegypti, Bull. Math. Biol., 70, 1297-1325 (2008) · Zbl 1142.92028
[33] Powell, J. R., Mosquitoes on the move, Science, 354, 971-972 (2016)
[34] Gloria-Soria, A.; Brown, J. E.; Kramer, V.; Yoshimizu, M. H.; Powell, J. R., Origin of the dengue fever mosquito, Aedes aegypti, in california, PLoS Negl. Trop. Dis., 8, e3029 (2014)
[35] Lima, A.; Lovin, D. D.; Hickner, P. V.; Severson, D. W., Evidence for an overwintering population of Aedes aegypti in capitol hill neighborhood, Washington DC, Am. J. Trop. Med. Hyg., 94, 231-235 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.