×

Global analysis and optimal control of a periodic visceral leishmaniasis model. (English) Zbl 1394.92121

Summary: In this paper, we propose and analyze a mathematical model for the dynamics of visceral leishmaniasis with seasonality. Our results show that the disease-free equilibrium is globally asymptotically stable under certain conditions when \(\mathcal R_0\), the basic reproduction number, is less than unity. When \(\mathcal R_0 > 1\) and under some conditions, then our system has a unique positive \(\omega\)-periodic solution that is globally asymptotically stable. Applying two controls, vaccination and treatment, to our model forces the system to be non-periodic, and all fractions of infected populations settle on a very low level.

MSC:

92D30 Epidemiology
49N90 Applications of optimal control and differential games
34D23 Global stability of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chaves, L.F.; Pascual, M.; Climate Cycles and Forecasts of Cutaneous Leishmaniasis, a Nonstationary Vector-Borne Disease; PLoS Med.: 2006; Volume 3 ,1320-1328.
[2] Reithinger, R.; Jean-Claude, D.; Hechmi, L.; Claude, P.; Bruce, A.; Simon, B.; Cutaneous leishmaniasis; Lancet Infect. Dis.: 2007; Volume 7 ,581-596.
[3] Zijlstra, E.E.; Musa, A.M.; Khalil, E.A.; el-Hassan, I.M.; el-Hassan, A.M.; Post-kala-azar dermal leishmaniasis; Lancet Infect. Dis.: 2003; Volume 3 ,87-98.
[4] Schriefer, A.; Luiz, H.G.; Paulo, R.L.M.; Marcus, L.; Hélio, A.L.; Ednaldo, L.; Guilherme, R.; Aristóteles, G.-N.; Ana, L.F.S.; Lee, W.R.; Geographic Clustering of Leishmaniasis in Northeastern Brazil; Emerg. Infect. Dis.: 2009; Volume 15 ,871-876.
[5] Ibrahim, A.A.; Abdoon, M.A.A.; Distribution and population dynamics of phlebotomus Sandflies in an endemic area of cutaneous leishmaniasis in Asir Region; J. Entomol.: 2005; Volume 2 ,102-108.
[6] Al-Tawfiq, J.A.; Abu-Khams, A.; Cutaneous leishmaniasis: A 46-year study of the epidemiology and clinical features in Saudi Arabia (1956-2002); Int. J. Infect. Dis.: 2004; Volume 8 ,244-250.
[7] Cardenas, R.; Claudia, M.; Alfonso, J.; Franco-Paredes, C.; Studied impact of climate change variability in the occurrence of leishmaniasis in Northeastern Colombia; Am. J. Trop. Med. Hyg.: 2006; Volume 75 ,273-277.
[8] Cross, E.R.; Newcomb, W.W.; Tucker, C.J.; Use of weather data and remote sensing to predict the geographic and seasonal distribution of phlebotomus papatasi in Southwest Asia; Am. J. Trop. Med. Hyg.: 1996; Volume 56 ,530-536.
[9] Tiwary, P.; Kumar, D.; Mishra, M.; Singh, R.P.; Rai, M.; Sundar, S.; Seasonal Variation in the Prevalence of Sand Flies Infected with Leishmania donovani; PLoS ONE: 2013; Volume 8 .
[10] Turki, K.F.; Iain, R.L.; The Seasonality of Cutaneous Leishmaniasis in Asir Region, Saudi Arabia; Int. J. Environ. Sustain.: 2014; Volume 3 ,1-13.
[11] Beaumier, C.M.; Gillespie, P.M.; Hotez, P.J.; Bottazzi, M.E.; New vaccines for neglected parasitic diseases and dengue; Transl. Res.: J. Lab. Clin. Med.: 2013; Volume 162 ,144-155.
[12] Dye, C.; The Logic of Visceral Leishmaniasis control; Am. J. Trop. Med. Hyg.: 1996; Volume 55 ,125-130.
[13] Dye, C.; Williams, B.G.; Malnutrition, age and risk of parasitic disease: Visceral leishmaniasis revisited; Proc. R. Soc. Lond. Ser. B: 1993; Volume 254 ,33-39.
[14] Lysenko, A.J.; Beljaev, A.E.; ; Quantitative Approaches to Epidemiology: London, UK 1987; ,263-290.
[15] Rabinovich, J.E.; Feliciangeli, M.D.; Arameters of leishmania braziliensis transmission by indoor Lutzomyia ovallesi in Venezuela; Am. J. Trop. Med. Hyg.: 2004; Volume 70 ,373-382.
[16] Burattini, M.N.; Coutinho, F.A.B.; Lopez, L.F.; Massad, E.; Modeling the dynamics of leishmaniasis considering human, animal host and vector populations; J. Biol. Syst.: 1998; Volume 6 ,337-356.
[17] Osman, O.F.; Kager, P.A.; Oskam, L.; Lieshmaniasis in the Sudan: A literature review with emphasis on clinical aspects; Trop. Med. Int. Health: 2000; Volume 5 ,553-562.
[18] Elmojtaba, I.M.; Mugisha, J.Y.T.; Hashim, M.H.A.; Mathematical analysis of the dynamics of visceral leishmaniasis in the Sudan; Appl. Math. Comput.: 2010; Volume 217 ,2567-2578. · Zbl 1200.92023
[19] Elmojtaba, I.M.; Mugisha, J.Y.T.; Hashim, M.H.A.; Modeling the role of cross immunity between two different strains of leishmania; Nonlinear Anal.: Real World Appl.: 2010; Volume 11 ,2175-2189. · Zbl 1196.34059
[20] Elmojtaba, I.M.; Mathematical model for the dynamics of visceral leishmaniasis-malaria co-infection; Math. Methods Appl. Sci.: 2016; Volume 39 ,4334-4353. · Zbl 1360.92099
[21] Elmojtaba, I.M.; Mugisha, J.Y.T.; Hashim, M.H.A.; Vaccination Model for Visceral Leishmaniasis with infective immigrants; Math. Methods Appl. Sci.: 2013; Volume 36 ,216-226. · Zbl 1263.92025
[22] Zhang, F.; Zhao, X.-Q.; A periodic epidemic model in patchy environment; J. Math. Anal. Appl.: 2007; Volume 325 ,496-516. · Zbl 1101.92046
[23] Wang, W.; Zhao, X.-Q.; Threshold Dynamics for compartmental Epidemic Models in Periodic Environments; J. Dyn. Diff. Equ.: 2008; Volume 20 ,699-717. · Zbl 1157.34041
[24] Smith, H.L.; Waltman, P.; ; The Theory of the Chemostat: Dynamics of Microbial Competition: London, UK 1995; . · Zbl 0860.92031
[25] Thieme, H.R.; Convergence results and Poincare-Bendixson trichotomy for asymptomatically autonomous differential equations; J. Math. Biol.: 1992; Volume 30 ,755-763. · Zbl 0761.34039
[26] Zhao, X.-Q.; ; Dynamical Systems in Population Biology: New York, NY, USA 2003; . · Zbl 1023.37047
[27] Hale, J.K.; ; Asymptotic Behavior of Dissipative Systems: Providence, RI, USA 1988; . · Zbl 0642.58013
[28] Zhu, Y.; Wang, K.; Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Laslie-Gower Holling-type II schemes; J. Math. Anal. Appl.: 2011; Volume 384 ,400-408. · Zbl 1232.34077
[29] Gemperli, A.; Vounatsou, P.; Sogoba, N.; Smith, T.; Malaria mapping using transmission models: Application to survey data from Mali; Am. J. Epidemiol.: 2006; Volume 163 ,289-297.
[30] Kasap, O.E.; Alten, B.; Comparative demography of the sand fly Phlebotomus papatasi (Diptera: Psychodidae) at constant temperatures; J. Vect. Ecol.: 2006; Volume 31 ,378-385.
[31] Coutinho, F.A.B.; Burattini, M.N.; Lopez, L.F.; Massad, E.; An approximate threshold condition for non-autonomous system: An application to a vector-borne infection; Math. Comput. Simul.: 2005; Volume 70 ,149-158. · Zbl 1075.92040
[32] Lainson, R.; Ryan, L.; Shaw, J.J.; Infective stages of Leishmania in the sandfly vector and some observations on the mechanism of transmission; Memórias Inst. Oswaldo Cruz: 1987; Volume 82 ,421-424.
[33] Gasim, S.; Elhassan, A.M.; Kharazmi, A.; Khalil, E.A.G.; Ismail, A.; Theander, T.G.; The development of post-kala-azar dermal leishmaniasis (PKDL) is associated with acquisition of Leishmania reactivity by peripheral blood mononuclear cells (PBMC); Clin. Exp. Immunol.: 2000; Volume 119 ,523-529.
[34] Sundar, S.; Lockwood, D.N.J.; Agrawal, G.; Rai, M.; Makharia, M.K.; Murray, H.W.; Treatment of Indian visceral leishmaniasis with single or daily infusions of low dose liposomal amphotericin B: Randomised trial Commentary: Cost and resistance remain issues; BMJ: 2001; Volume 323 ,419-422.
[35] Pontryagin, L.S.; ; Mathematical Theory of Optimal Processes: Boca Raton, FL, USA 1987; . · Zbl 0629.26002
[36] Yusuf, T.T.; Benyah, F.; Optimal control of vaccination and treatment for an SIR epidemiological model; World J. Model. Simul.: 2008; Volume 8 ,194-204.
[37] Lenhart, S.; Workman, J.T.; ; Optimal Control Applied to Biological Models: Boca Raton, FL, USA 2007; . · Zbl 1291.92010
[38] Fleming, W.H.; Rishel, R.W.; ; Deterministic and Stochastic Optimal Control: New York, NY, USA 2012; . · Zbl 0323.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.