×

zbMATH — the first resource for mathematics

On positively invariant polyhedrons for continuous-time positive linear systems. (English) Zbl 1454.93115
Summary: This paper is concerned with the determination of positively invariant polyhedron for positive linear systems subject to external disturbances whose \((\infty,1)\)-norm or \((\infty,\infty)\)-norm are bounded by a prescribed constant. Necessary and sufficient conditions for the existence of a positively invariant polyhedron are derived in terms of a set of inequalities which can be solved by linear programming, and the link between Lyapunov stability and positively invariant polyhedron is also revealed.
MSC:
93C28 Positive control/observation systems
93C05 Linear systems in control theory
93C73 Perturbations in control/observation systems
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
90C05 Linear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Article Number: 145. · Zbl 1422.93012
[2] Du, B.; Lam, J.; Shu, Z.; Chen, Y., On reachable sets for positive linear systems under constrained exogenous inputs, Automatica, 74, 230-237 (2016) · Zbl 1348.93043
[3] Oucheriah, S., Robust tracking and model following of uncertain dynamic delay systems by memoryless linear controllers, IEEE Trans. Automat. Control, 44, 7, 1473-1477 (1999) · Zbl 0955.93026
[4] Khalil, H. K., Nonlinear Systems (2002), Prentice-Hall: Prentice-Hall New Jersey
[5] Castelan, E. B.; Hennet, J. C., On invariant polyhedra of continuous-time linear systems, IEEE Trans. Automat. Control, 38, 11, 1680-1685 (1993) · Zbl 0790.93099
[6] Milani, B. E.A.; Dórea, C. E.T., On invariant polyhedra of continuous-time systems subject to additive disturbances, Automatica, 32, 5, 785-789 (1996) · Zbl 0851.93046
[7] Lapierre, L.; Zapata, R.; Lepinay, P., Combined path-following and obstacle avoidance control of a wheeled robot, Int. J. Robot. Res., 26, 4, 361-375 (2007)
[8] Ménec, S. L., Linear differential game with two pursuers and one evader, Adv. Dyn. Games, 11, 209-226 (2011) · Zbl 1218.91026
[9] Haimovich, H.; Seron, M. M., Bounds and invariant sets for a class of switching systems with delayed-state-dependent perturbations, Automatica, 49, 748-754 (2013) · Zbl 1268.93077
[10] Willems, J., Lyapunov functions for diagonally dominant systems, Automatica, 12, 519-523 (1976) · Zbl 0345.93040
[11] Kofman, E.; Haimovich, H.; Seron, M. M., A systematic method to obtain ultimate bounds for perturbed systems, Int. J. Control, 80, 2, 167-178 (2007) · Zbl 1140.93428
[12] Shen, J.; Zheng, W., Stability analysis of linear delay systems with cone invariance, Automatica, 53, 30-36 (2015) · Zbl 1371.93171
[13] Shen, J.; Lam, J., On the decay rate of discrete-time linear delay systems with cone invariance, IEEE Trans. Autom. Control, 62, 7, 3442-3447 (2017) · Zbl 1370.93228
[14] Mézo, T. L.; Jaulin, L.; Zerr, B., An interval approach to compute invariant sets, IEEE Trans. Autom. Control, 62, 8, 4236-4242 (2017) · Zbl 1373.93060
[15] Zhao, X.; Yin, Y.; Liu, L., Stability analysis and delay control for switched positive linear systems, IEEE Trans. Autom. Control, 63, 7, 2184-2190 (2018) · Zbl 1423.93334
[16] Lam, J.; Chen, Y.; Liu, X., Positive Systems: Theory and Applications (POSTA 2018) (2019), Springer Nature Switzerland AG
[17] Zhao, X.; Yin, Y.; Zheng, X., State-dependent switching control of switched positive fractional-order systems, ISA Trans., 62, 103-108 (2016)
[18] Farina, L.; Rinaldi, S., Positive Linear Systems: Theory and Applications (2000), Wiley, New York · Zbl 0988.93002
[19] Haddad, W. M.; Chellaboina, V.-S.; Hui, Q., Nonnegative and Compartmental Dynamic Systems (2010), Princeton University Press: Princeton University Press Princeton, NJ
[20] Bitsoris, G., Existence of positively invariant polyhedral sets for continuous-time linear systems, Control Theory Adv. Tech., 7, 3, 407-427 (1991)
[21] LaSalle, J. P.; Artstein, Z., The Stability of Dynamical Systems (1976), SIAM Editions, Philadelphia
[22] Bitsoris, G., On the stability of nonlinear systems, Int. J. Control, 38, 3, 699-711 (1983) · Zbl 0523.93047
[23] Dinh, T. N.; Mazenc, F.; Niculescu, S. I., Interval observer composed of observers for nonlinear systems, Proceedings of the European Control Conference, 660-665 (2014), Strasbourg, France
[24] Zhang, J.; Cai, X.; Zhang, W., Robust model predictive control with l_1-gain performance for positive systems, J. Frankl. Inst., 352, 7, 2831-2846 (2015) · Zbl 1395.93185
[25] Chen, Y.; Bo, Y.; Du, B., Positive L1-filter design for continuous-time positive Markov jump linear systems: full-order and reduced-order, IET Control Theory Appl., 13, 12, 1855-1862 (2019) · Zbl 1432.93337
[26] M. Fang, L. Wang, Z.G. Wu, Asynchronous stabilization of Boolean control networks with stochastic switched signals, IEEE Trans. Syst. Man Cybern. Syst. doi:10.1109/TSMC.2019.2913088.
[27] L. Wang, M. Fang, Z.G. Wu, et al. Necessary and sufficient conditions on pinning stabilization for stochastic Boolean networks, IEEE Trans. Cybern. doi:10.1109/TCYB.2019.2931051.
[28] Wang, L.; Fang, M.; Wu, Z. G., Mean square stability for Markov jump Boolean networks, Sci. China Inf. Sci., 63, 1, 112205 (2020)
[29] Liu, X., Stability analysis of a class of nonlinear positive switched systems with delays, Nonlinear Anal. Hybrid Syst., 16, 1-12 (2015) · Zbl 1310.93072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.