×

Integration-by-parts reductions of Feynman integrals using singular and GPI-space. (English) Zbl 1435.81076

Summary: We introduce an algebro-geometrically motived integration-by-parts (IBP) reduction method for multi-loop and multi-scale Feynman integrals, using a framework for massively parallel computations in computer algebra. This framework combines the computer algebra system Singular with the workflow management system GPI-Space, which are being developed at the TU Kaiserslautern and the Fraunhofer Institute for Industrial Mathematics (ITWM), respectively. In our approach, the IBP relations are first trimmed by modern tools from computational algebraic geometry and then solved by sparse linear algebra and our new interpolation method. Modelled in terms of Petri nets, these steps are efficiently automatized and automatically parallelized by GPI-Space. We demonstrate the potential of our method at the nontrivial example of reducing two-loop five-point non-planar double-pentagon integrals. We also use GPI-Space to convert the basis of IBP reductions, and discuss the possible simplification of master-integral coefficients in a uniformly transcendental basis.

MSC:

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81U05 \(2\)-body potential quantum scattering theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Badger, S.; Frellesvig, H.; Zhang, Y., A two-loop five-gluon helicity amplitude in QCD, JHEP, 12, 045 (2013)
[2] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett.116 (2016) 062001 [Erratum ibid.116 (2016) 189903] [arXiv:1511.05409] [INSPIRE]. · Zbl 1356.81169
[3] Badger, S.; Brønnum-Hansen, C.; Hartanto, HB; Peraro, T., First look at two-loop five-gluon scattering in QCD, Phys. Rev. Lett., 120 (2018)
[4] Abreu, S., Planar two-loop five-gluon amplitudes from numerical unitarity, Phys. Rev. D, 97, 116014 (2018)
[5] Abreu, S., The two-loop five-point amplitude in 𝒩 = 4 super-Yang-Mills theory, Phys. Rev. Lett., 122, 121603 (2019)
[6] Abreu, S., Planar two-loop five-parton amplitudes from numerical unitarity, JHEP, 11, 116 (2018)
[7] R.H. Boels, Q. Jin and H. Lüo, Efficient integrand reduction for particles with spin, arXiv:1802.06761 [INSPIRE].
[8] Gehrmann, T.; Henn, JM; Lo Presti, NA, Pentagon functions for massless planar scattering amplitudes, JHEP, 10, 103 (2018) · Zbl 1402.81256
[9] Badger, S.; Brønnum-Hansen, C.; Hartanto, HB; Peraro, T., Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case, JHEP, 01, 186 (2019) · Zbl 1409.81155
[10] Abreu, S., Analytic form of planar two-loop five-gluon scattering amplitudes in QCD, Phys. Rev. Lett., 122 (2019) · Zbl 1416.81202
[11] Chicherin, D., Analytic result for a two-loop five-particle amplitude, Phys. Rev. Lett., 122, 121602 (2019)
[12] Chicherin, D., The two-loop five-particle amplitude in 𝒩 = 8 supergravity, JHEP, 03, 115 (2019) · Zbl 1414.83096
[13] Abreu, S., The two-loop five-point amplitude in 𝒩 = 8 supergravity, JHEP, 03, 123 (2019) · Zbl 1414.83094
[14] Abreu, S., Analytic Form of the Planar Two-Loop Five-Parton Scattering Amplitudes in QCD, JHEP, 05, 084 (2019) · Zbl 1416.81202
[15] Hartanto, HB, A numerical evaluation of planar two-loop helicity amplitudes for a W -boson plus four partons, JHEP, 09, 119 (2019)
[16] Zhang, Y., Integrand-level reduction of loop amplitudes by computational algebraic geometry methods, JHEP, 09, 042 (2012) · Zbl 1397.81183
[17] Mastrolia, P.; Mirabella, E.; Ossola, G.; Peraro, T., Scattering amplitudes from multivariate polynomial division, Phys. Lett., B 718, 173 (2012)
[18] Henn, JM, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett., 110, 251601 (2013)
[19] Henn, JM, Lectures on differential equations for Feynman integrals, J. Phys., A 48, 153001 (2015) · Zbl 1312.81078
[20] Ita, H., Two-loop integrand decomposition into master integrals and surface terms, Phys. Rev., 94, 116015 (2016)
[21] Abreu, S., Two-loop four-gluon amplitudes from numerical unitarity, Phys. Rev. Lett., 119, 142001 (2017)
[22] Dixon, LJ; Drummond, JM; Henn, JM, Bootstrapping the three-loop hexagon, JHEP, 11, 023 (2011) · Zbl 1306.81092
[23] Dixon, LJ; Drummond, JM; von Hippel, M.; Pennington, J., Hexagon functions and the three-loop remainder function, JHEP, 12, 049 (2013) · Zbl 1342.81159
[24] Dixon, LJ; von Hippel, M., Bootstrapping an NMHV amplitude through three loops, JHEP, 10, 065 (2014)
[25] Caron-Huot, S.; Dixon, LJ; McLeod, A.; von Hippel, M., Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett., 117, 241601 (2016)
[26] Dixon, LJ; von Hippel, M.; McLeod, AJ, The four-loop six-gluon NMHV ratio function, JHEP, 01, 053 (2016)
[27] Dixon, LJ, Heptagons from the Steinmann cluster bootstrap, JHEP, 02, 137 (2017) · Zbl 1377.81197
[28] Chicherin, D.; Henn, J.; Mitev, V., Bootstrapping pentagon functions, JHEP, 05, 164 (2018)
[29] Caron-Huot, S., Six-Gluon amplitudes in planar 𝒩 = 4 super-Yang-Mills theory at six and seven loops, JHEP, 08, 016 (2019) · Zbl 1421.81136
[30] von Manteuffel, A.; Schabinger, RM, A novel approach to integration by parts reduction, Phys. Lett., B 744, 101 (2015) · Zbl 1330.81151
[31] Peraro, T., Scattering amplitudes over finite fields and multivariate functional reconstruction, JHEP, 12, 030 (2016) · Zbl 1390.81631
[32] Klappert, J.; Lange, F., Reconstructing rational functions with FireFly, Comput. Phys. Commun., 247, 106951 (2020) · Zbl 1509.68342
[33] Peraro, T., FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs, JHEP, 07, 031 (2019)
[34] Chetyrkin, K.; Tkachov, F., Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys., B 192, 159 (1981)
[35] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. · Zbl 0973.81082
[36] Smirnov, AV, Algorithm FIRE — Feynman Integral REduction, JHEP, 10, 107 (2008) · Zbl 1245.81033
[37] Smirnov, AV, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun., 189, 182 (2015) · Zbl 1344.81030
[38] A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with modular arithmetic, arXiv:1901.07808 [INSPIRE].
[39] Maierhöfer, P.; Usovitsch, J.; Uwer, P., Kira — A Feynman integral reduction program, Comput. Phys. Commun., 230, 99 (2018) · Zbl 1498.81004
[40] P. Maierhöfer and J. Usovitsch, Kira 1.2 release notes, arXiv:1812.01491 [INSPIRE]. · Zbl 1498.81004
[41] A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].
[42] Gluza, J.; Kajda, K.; Kosower, DA, Towards a basis for planar two-loop integrals, Phys. Rev., D 83 (2011)
[43] Schabinger, RM, A new algorithm for the generation of unitarity-compatible integration by parts relations, JHEP, 01, 077 (2012) · Zbl 1306.81359
[44] Larsen, KJ; Zhang, Y., Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev., D 93 (2016)
[45] Bern, Z.; Enciso, M.; Ita, H.; Zeng, M., Dual conformal symmetry, integration-by-parts reduction, differential equations and the nonplanar sector, Phys. Rev., D 96 (2017)
[46] Lee, RN; Pomeransky, AA, Critical points and number of master integrals, JHEP, 11, 165 (2013) · Zbl 1342.81139
[47] Georgoudis, A.; Larsen, KJ; Zhang, Y., Azurite: an algebraic geometry based package for finding bases of loop integrals, Comput. Phys. Commun., 221, 203 (2017) · Zbl 1498.81007
[48] Bitoun, T.; Bogner, C.; Klausen, RP; Panzer, E., Feynman integral relations from parametric annihilators, Lett. Math. Phys., 109, 497 (2019) · Zbl 1412.81141
[49] Chawdhry, HA; Lim, MA; Mitov, A., Two-loop five-point massless QCD amplitudes within the integration-by-parts approach, Phys. Rev., D 99 (2019)
[50] Badger, S., Analytic form of the full two-loop five-gluon all-plus helicity amplitude, Phys. Rev. Lett., 123 (2019)
[51] Kosower, DA, Direct solution of integration-by-parts systems, Phys. Rev., D 98 (2018)
[52] Mastrolia, P.; Mizera, S., Feynman integrals and intersection theory, JHEP, 02, 139 (2019) · Zbl 1411.81093
[53] Frellesvig, H., Decomposition of Feynman integrals on the maximal cut by intersection numbers, JHEP, 05, 153 (2019) · Zbl 1416.81198
[54] Frellesvig, H., Vector space of Feynman integrals and multivariate intersection numbers, Phys. Rev. Lett., 123, 201602 (2019)
[55] Liu, X.; Ma, Y-Q, Determining arbitrary Feynman integrals by vacuum integrals, Phys. Rev., D 99 (2019)
[56] Liu, X.; Ma, Y-Q; Wang, C-Y, A systematic and efficient method to compute multi-loop master integrals, Phys. Lett., 779, 353 (2018)
[57] Y. Wang, Z. Li and N. Ul Basat, Direct reduction of amplitude, arXiv:1901.09390 [INSPIRE].
[58] A. Kardos, A new reduction strategy for special negative sectors of planar two-loop integrals without Laporta algorithm, arXiv:1812.05622 [INSPIRE].
[59] Y. Zhang, Lecture notes on multi-loop integral reduction and applied algebraic geometry, arXiv:1612.02249 [INSPIRE].
[60] Böhm, J., Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections, JHEP, 09, 024 (2018) · Zbl 1398.81264
[61] Böhm, J., Complete sets of logarithmic vector fields for integration-by-parts identities of Feynman integrals, Phys. Rev., D 98 (2018)
[62] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-1 — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de (2018).
[63] F.J. Pfreundt and M. Rahn, GPI-Space, Fraunhofer ITWM Kaiserslautern, http://www.gpi-space.de/ (2018).
[64] Wasser, P., Analytic properties of Feynman integrals for scattering amplitudes (2016), M.Sc. thesis: Johannes Gutenberg-Universität Mainz, Mainz, Germany, M.Sc. thesis
[65] P.A. Baikov, Explicit solutions of the three loop vacuum integral recurrence relations, Phys. Lett.B 385 (1996) 404 [hep-ph/9603267] [INSPIRE].
[66] R.N. Lee, Modern techniques of multiloop calculations, in the proceedings of the 49^thRencontres de Moriond on QCD and High Energy Interactions, March 22-29, La Thuile, Italy (2014), arXiv:1405.5616 [INSPIRE].
[67] The_SpaSM_group, SpaSM: a Sparse direct Solver Modulo p, v1.2 ed., http://github.com/cbouilla/spasm (2017).
[68] Mayr, EW; Meyer, AR, The complexity of the word problems for commutative semigroups and polynomial ideals, Adv. Math., 46, 305 (1982) · Zbl 0506.03007
[69] J. Böhm et al., Towards massively parallel computations in algebraic geometry, arXiv:1808.09727. · Zbl 1485.14109
[70] Jordan, C.; Joswig, M.; Kastner, L., Parallel enumeration of triangulations, Electron. J. Combin., 25, 27 (2018) · Zbl 1393.68175
[71] M. Rahn, GPI-Space whitepaper, Fraunhofer ITWM Kaiserslautern, http://gpi-space.com/wp-content/uploads/2014/06/GPISpaceWhitepaper.pdf (2014).
[72] L. Ristau, Using Petri nets to parallelize algebraic algorithms, Ph.D. Thesis, TU Kaiserslautern, Kaiserslautern, Germany (2019).
[73] C. Reinbold, Computation of the GIT-fan using a massively parallel implementation, Master’s Thesis (2018).
[74] D. Bendle, Massively parallel computation of tropical varieties, Bachelor’s Thesis (2018).
[75] Bern, Z., Logarithmic singularities and maximally supersymmetric amplitudes, JHEP, 06, 202 (2015) · Zbl 1388.81136
[76] Chicherin, D., All master integrals for three-jet production at next-to-next-to-leading order, Phys. Rev. Lett., 123 (2019)
[77] Arkani-Hamed, N.; Bourjaily, JL; Cachazo, F.; Trnka, J., Local integrals for planar scattering amplitudes, JHEP, 06, 125 (2012) · Zbl 1397.81428
[78] Chicherin, D., Analytic result for the nonplanar hexa-box integrals, JHEP, 03, 042 (2019) · Zbl 1414.81255
[79] Lykke Jacobsen, J.; Jiang, Y.; Zhang, Y., Torus partition function of the six-vertex model from algebraic geometry, JHEP, 03, 152 (2019) · Zbl 1414.81177
[80] Y. Jiang and Y. Zhang, Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE, JHEP03 (2018) 087 [arXiv:1710.04693] [INSPIRE]. · Zbl 1388.81440
[81] R. Zippel, Probabilistic algorithms for sparse polynomials, in International Symposium on Symbolic and Algebraic Manipulation, E.W. Ng ed., Lecture Notes in Computer Science volume 72, Springer, Germany (1979). · Zbl 0418.68040
[82] Ben Or, M.; Tiwari, P., A deterministic algorithm for sparse multivariate polynomial interpolation, in the proceedings of the 20^thannual ACM symposium on Theory of computing (STOC’88) (1988), Chicago: U.S.A, Chicago
[83] Kaltofen, E.; Lee, WS; Lobo, A., Early Termination in Ben-Or/Tiwari Sparse Interpolation and a Hybrid of Zippel’s Algorithm*, in the proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC01) (2001), London: Canada, London · Zbl 1326.68358
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.