×

zbMATH — the first resource for mathematics

Absolute and convective instabilities in counter-current gas-liquid film flows. (English) Zbl 1329.76119
Summary: We consider a thin liquid film flowing down an inclined plate in the presence of a counter-current turbulent gas. By making appropriate assumptions, D. Tseluiko and S. Kalliadasis [J. Fluid Mech. 673, 19–59 (2011; Zbl 1225.76044)] developed low-dimensional non-local models for the liquid problem, namely a long-wave (LW) model and a weighted integral-boundary-layer (WIBL) model, which incorporate the effect of the turbulent gas. By utilising these models, along with the Orr-Sommerfeld problem formulated using the full governing equations for the liquid phase and associated boundary conditions, we explore the linear stability of the gas-liquid system. In addition, we devise a generalised methodology to investigate absolute and convective instabilities in the non-local equations describing the gas-liquid flow. We observe that at low gas flow rates, the system is convectively unstable with the localised disturbances being convected downwards. As the gas flow rate is increased, the instability becomes absolute and localised disturbances spread across the whole domain. As the gas flow rate is further increased, the system again becomes convectively unstable with the localised disturbances propagating upwards. We find that the upper limit of the absolute instability region is close to the ’flooding’ point associated with the appearance of large-amplitude standing waves, as obtained in [loc. cit.], and our analysis can therefore be used to predict the onset of flooding. We also find that an increase in the angle of inclination of the channel requires an increased gas flow rate for the onset of absolute instability. We generally find good agreement between the results obtained using the full equations and the reduced models. Moreover, we find that the WIBL model generally provides better agreement with the results for the full equations than the LW model. Such an analysis is important for an understanding of the ranges of validity of the reduced model equations. In addition, a comparison of our theoretical predictions with the experiments of A. Zapke and D. G. Kröger [Int. J. Multiphase Flow 26, No. 9, 1439–1455 (2000; Zbl 1137.76796)] shows a fairly good agreement. We supplement our stability analysis with time-dependent computations of the linearised WIBL model. To provide some insight into the mechanisms of instability, we perform an energy budget analysis.

MSC:
76E15 Absolute and convective instability and stability in hydrodynamic stability
76A20 Thin fluid films
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112099005790 · Zbl 0982.76037
[2] DOI: 10.1016/S0301-9322(96)90005-1 · Zbl 1135.76365
[3] DOI: 10.1017/jfm.2013.98 · Zbl 1287.76050
[4] DOI: 10.1006/jcph.1996.5571 · Zbl 0878.76054
[5] DOI: 10.1017/S0022112005005422 · Zbl 1080.76009
[6] Benney, J. Math. Phys. 45 pp 150– (1966) · Zbl 0148.23003
[7] DOI: 10.1017/S0022112066001289 · Zbl 0158.45005
[8] DOI: 10.1007/s100510051137
[9] DOI: 10.1017/S0022112059000568 · Zbl 0093.19106
[10] DOI: 10.1016/0009-2509(66)80009-X
[11] DOI: 10.1007/s100510050550
[12] DOI: 10.1017/S0022112057000373 · Zbl 0078.18003
[13] DOI: 10.1016/0378-4371(95)00361-4
[14] DOI: 10.1103/PhysRevE.85.046302
[15] Azzopardi, Gas–Liquid Flows (2006)
[16] DOI: 10.1017/S0022112095002837 · Zbl 0850.76175
[17] Pereira, Phys. Rev. E 78 (2008)
[18] DOI: 10.1007/BF01090346 · Zbl 0478.76055
[19] DOI: 10.1002/er.908
[20] Chang, Complex Wave Dynamics on Thin Films (2002)
[21] DOI: 10.1017/S0022112071002842 · Zbl 0237.76027
[22] Alekseenko, Wave Flow of Liquid Films (1994)
[23] DOI: 10.1016/0009-2509(69)87032-6
[24] DOI: 10.1017/jfm.2011.281 · Zbl 1241.76384
[25] DOI: 10.1103/PhysRevE.86.066305
[26] DOI: 10.1017/jfm.2012.452 · Zbl 1284.76154
[27] Briggs, Electron-Stream Interaction with Plasmas (1964)
[28] DOI: 10.1016/j.ces.2005.04.014
[29] DOI: 10.1017/S0022112057000567 · Zbl 0078.40705
[30] DOI: 10.1016/S0301-9322(99)00098-1 · Zbl 1137.76797
[31] DOI: 10.1016/S0301-9322(99)00097-X · Zbl 1137.76796
[32] DOI: 10.1017/S0022112095003855 · Zbl 0849.76020
[33] DOI: 10.1002/aic.11506
[34] DOI: 10.1063/1.1706737 · Zbl 0116.19102
[35] DOI: 10.1063/1.868232
[36] DOI: 10.1016/j.piutam.2014.01.052
[37] DOI: 10.1016/0009-2509(69)80038-2
[38] Lin, Phys. Fluids 22 (2010)
[39] DOI: 10.1017/S0022112001003688 · Zbl 0968.76509
[40] DOI: 10.1017/CBO9780511547096 · Zbl 1074.76001
[41] DOI: 10.1016/j.ijmultiphaseflow.2013.05.011
[42] DOI: 10.1063/1.857379
[43] DOI: 10.1016/j.physd.2010.07.011 · Zbl 1235.37030
[44] Kapitza, Collected Papers of P. L. Kapitza (1965) pp 662– (1948)
[45] DOI: 10.1017/S002211201000618X · Zbl 1225.76044
[46] DOI: 10.1007/978-1-84882-367-9 · Zbl 1231.76001
[47] Trifonov, AIChE J. 56 pp 1975– (2010)
[48] DOI: 10.1016/j.ijheatfluidflow.2006.05.010
[49] DOI: 10.1017/S0022112007008476 · Zbl 1128.76006
[50] DOI: 10.1007/s10665-004-1016-x · Zbl 1074.76009
[51] DOI: 10.1017/S0022112006001558 · Zbl 1106.76029
[52] DOI: 10.1017/S0022112092002489 · Zbl 0825.76193
[53] DOI: 10.1063/1.1767835 · Zbl 1186.76536
[54] DOI: 10.1146/annurev.fl.22.010190.002353
[55] DOI: 10.1137/1.9780898719598 · Zbl 0953.68643
[56] Huerre, Perspectives in Fluid Dynamics: A Collective Introduction to Current Research (2000)
[57] DOI: 10.1016/S0167-2789(97)00141-3 · Zbl 0962.76526
[58] DOI: 10.1017/S0022112083000580 · Zbl 0557.76044
[59] DOI: 10.1016/0009-2509(78)80020-7
[60] DOI: 10.1017/CBO9781139172189
[61] DOI: 10.1016/j.jcp.2005.06.017 · Zbl 1161.76547
[62] DOI: 10.1002/aic.690030303
[63] DOI: 10.1017/S0022112082001852 · Zbl 0491.76045
[64] DOI: 10.1017/S0022112062001184 · Zbl 0108.20503
[65] DOI: 10.1017/S0022112065000770
[66] DOI: 10.1111/j.0022-2526.2005.01541.x · Zbl 1145.34304
[67] Semyonov, J. Tech. Phys. 14 pp 427– (1944)
[68] DOI: 10.1103/PhysRevLett.98.244502
[69] DOI: 10.1007/978-3-642-85829-1
[70] DOI: 10.1017/S0022112008001225 · Zbl 1151.76378
[71] DOI: 10.1063/1.3697471
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.