zbMATH — the first resource for mathematics

Falling liquid films in narrow tubes: occlusion scenarios. (English) Zbl 1460.76045
Summary: We study a gravity-driven wavy liquid film falling down the inner surface of a narrow cylindrical tube in the presence of an active core gas flow. We employ the model of the first author and the third author [ibid. 762, 68–109 (2015; Zbl 1335.76011)] to investigate the role of surface waves in the occlusion of the tube. We consider four real working liquids and reproduce several experiments from the literature, focusing on conditions where the Bond number is greater or equal to unity. We prove that occlusion is triggered by spatially growing surface waves beyond the limit of saturated travelling-wave solutions, and delimit three possible regimes for a naturally evolving wavy film: (i) certain occlusion, when the liquid Reynolds number is greater than the limit of the spatially most amplified travelling waves. Occlusion is caused by surface waves emerging from linear wave selection (scenario I); (ii) conditional occlusion, when the most amplified waves possess travelling states but longer waves do not. Occlusion is triggered by secondary instability, generating long waves through nonlinear coarsening dynamics (scenario II); and (iii) impossible occlusion, when travelling waves always exist, no matter how great their wavelength. We show that certain occlusion is delayed by gravity and precipitated by a counter-current gas flow, axial viscous diffusion (high-viscosity liquids) and inertia (low-viscosity liquids). The latter two effects are also found to determine whether the occlusion mechanism is dictated by loss of travelling-wave solutions or absolute instability. Finally, we show that occlusion can be prevented through coherent inlet forcing. As a side benefit, we introduce an augmented version of our model based on a localized additional force term that allows representing stable travelling liquid pseudo-plugs.
76A20 Thin fluid films
Full Text: DOI
[1] Albert, C., Marschall, H. & Bothe, D.2013Direct numerical simulation of interfacial mass transfer into falling films. Intl J. Heat Mass Transfer69, 343-357.
[2] Alekseenko, S. V., Aktershev, S. P., Cherdantsev, A. V., Kharlamov, S. M. & Markovich, D. M.2009Primary instabilities of liquid film flow sheared by turbulent gas stream. Intl J. Multiphase Flow35, 617-627.
[3] Aul, R. W. & Olbricht, W. L.1990Stability of a thin annular film in pressure-driven, low-Reynolds-number flow through a capillary. J. Fluid Mech.215, 585-599.
[4] Beltrame, P.2018Partial and complete wetting in a micro-tube. Europhys. Lett.121, 64002.
[5] Benney, D. J.1966Long waves on liquid films. J. Math. Phys.45, 150-155. · Zbl 0148.23003
[6] Bian, S., Tai, C.-F., Halpern, D., Zheng, Y. & Grotberg, J. B.2010Experimental study of flow fields in an airway closure model. J. Fluid Mech.647, 391-402. · Zbl 1189.76014
[7] Brackbill, J. U., Kothe, D. B. & Zemach, C.1992A continuum method for modelling surface tension. J. Comput. Phys.100, 335-354. · Zbl 0775.76110
[8] Brooke Benjamin, T.1957Wave formation in laminar flow down an inclined plane. J. Fluid Mech.2, 554-574. · Zbl 0078.18003
[9] Camassa, R., Forest, M. G., Lee, L., Ogrosky, H. R. & Olander, J.2012Ring waves as a mass transport mechanism in air-driven core-annular flows. Phys. Rev. E86 (6), 066305.
[10] Camassa, R., Marzuola, J. L, Ogrosky, H. R. & Vaughn, N.2016Traveling waves for a model of gravity-driven film flows in cylindrical domains. Physica D333, 254-265. · Zbl 1415.35078
[11] Camassa, R., Ogrosky, H. R. & Olander, J.2014Viscous film-flow coating the interior of a vertical tube. Part 1. Gravity-driven flow. J. Fluid Mech.745, 682-715. · Zbl 1327.76018
[12] Camassa, R., Ogrosky, H. R. & Olander, J.2017Viscous film-flow coating the interior of a vertical tube. Part 2. Air-driven flow. J. Fluid Mech.825, 1056-1090. · Zbl 1374.76022
[13] Chang, H. C., Demekhin, E. A. & Kalaidin, E.1996aSimulation of noise-driven wave dynamics on a falling film. AIChE J.42 (6), 1553-1568.
[14] Chang, H. C., Demekhin, E. A., Kalaidin, E. & Ye, Y.1996bCoarsening dynamics of falling-film solitary waves. Phys. Rev. E54 (2), 1467-1477.
[15] Chang, H. C., Demekhin, E. A. & Kopelevich, D. I.1993Nonlinear evolution of waves on a vertically falling film. J. Fluid Mech.250, 433-480.
[16] Dao, E. K. & Balakotaiah, V.2000Experimental study of wave occlusion on falling films in a vertical pipe. AIChE J.46 (7), 1300-1306.
[17] Delaunay, C.1841Sur la surface de révolution dont la courbure moyenne est constante. J. Math. Pures Appl.6, 309-320.
[18] Dietze, G. F.2016On the Kapitza instability and the generation of capillary waves. J. Fluid Mech.789, 368-401.
[19] Dietze, G. F.2019Effect of wall corrugations on scalar transfer to a wavy falling liquid film. J. Fluid Mech.859, 1098-1128. · Zbl 1415.76032
[20] Dietze, G. F. & Ruyer-Quil, C.2013Wavy liquid films in interaction with a confined laminar gas flow. J. Fluid Mech.722, 348-393. · Zbl 1287.76050
[21] Dietze, G. F. & Ruyer-Quil, C.2015Films in narrow tubes. J. Fluid Mech.762, 68-109.
[22] Ding, Z., Liu, Z., Liu, R. & Yang, C.2019Thermocapillary effect on the dynamics of liquid films coating the interior surface of a tube. Intl J. Heat Mass Transfer138, 524-533.
[23] Doedel, E. J.2008AUTO07p: Continuation and Bifurcation Software for Ordinary Differential Equations. Montreal Concordia University.
[24] Duprat, C., Ruyer-Quil, C., Kalliadasis, S. & Giorgiutti-Dauphiné, F.2007Absolute and convective instabilities of a viscous film flowing down a vertical fiber. Phys. Rev. Lett.98, 244502. · Zbl 1151.76378
[25] Everett, D. H. & Haynes, J. M.1972Model studies of capillary condensation. J. Colloid Interface Sci.38 (1), 125-137.
[26] Frenkel, A. L., Babchin, A. J., Levich, B. G., Shlang, T. & Sivashinsky, G. I.1987Annular flows can keep unstable films from breakup: nonlinear saturation of capillary instability. J. Colloid Interface Sci.115 (1), 225-233.
[27] Gauglitz, P. A. & Radke, C. J.1988An extended evolution equation for liquid film breakup in cylindrical capillaries. Chem. Engng Sci.43 (7), 1457-1465.
[28] Goren, S. L.1962The instability of an annular thread of fluid. J. Fluid Mech.12 (2), 309-319. · Zbl 0105.39602
[29] Grotberg, J.2011Respiratory fluid mechanics. Phys. Fluids23, 021301.
[30] Hickox, C. E.1971Instability due to viscosity and density stratification in axisymmetric pipe flow. Phys. Fluids14 (2), 251-262. · Zbl 0216.52703
[31] Hirt, C. W. & Nichols, B. D.1981Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.39, 201-225. · Zbl 0462.76020
[32] Jensen, O. E.2000Draining collars and lenses in liquid-lined vertical tubes. J. Colloid Interface Sci.221, 38-49.
[33] Joseph, D. D., Chen, K. P. & Renardy, Y. Y.1997Core-annular flows. Annu. Rev. Fluid Mech.29, 65-90.
[34] Kalliadasis, S. & Chang, H. C.1994Drop formation during coating of vertical fibres. J. Fluid Mech.261, 135-168. · Zbl 0818.76021
[35] Kalliadasis, S., Ruyer-Quil, C., Scheid, B. & Velarde, M. G.2012Falling Liquid Films, . Springer. · Zbl 1231.76001
[36] Kamm, R. D. & Schroter, R. C.1989Is airway closure caused by a liquid film instability?Respir. Physiol.75, 141-156.
[37] Kapitza, P. L.1948Wave flow of thin layer of viscous fluid (in Russian). Zh. Eksp. Teor. Fiz.18 (1), 3-28.
[38] King, M. & Macklem, P. T.1977Rheological properties of microliter quantities of normal mucus. J. Appl. Phys.42 (6), 797-802.
[39] Kouris, C. & Tsamopoulos, J.2001Dynamics of axisymmetric core-annular flow in a straight tube. I. The more viscous fluid in the core, bamboo waves. Phys. Fluids13 (4), 841-858. · Zbl 1184.76302
[40] Lavalle, G., Grenier, N., Mergui, S. & Dietze, G. F.2020Solitary waves on superconfined falling liquid films. Phys. Rev. Fluids5, 032001(R).
[41] Lewis, T. A., Tzeng, Y.-S., Mckinstry, E. L., Tooker, A. C., Hong, K., Sun, Y., Mansour, J., Handler, Z. & Albert, M. S.2005Quantification of airway diameters and 3D airway tree rendering from dynamic hyperpolarized 3He magnetic resonance imaging. Magn. Reson. Med.53, 474-478.
[42] Lister, J. R., Rallison, J. M., King, A. A., Cummings, L. J. & Jensen, O. E.2006Capillary drainage of an annular film: the dynamics of collars and lobes. J. Fluid Mech.552, 311-343. · Zbl 1151.76376
[43] Liu, J. & Gollub, J. P.1993Onset of spatially chaotic waves on flowing films. Phys. Rev. Lett.70 (15), 2289-2292.
[44] Liu, R. & Ding, Z.2017Stability of viscous film flow coating the interior of a vertical tube with a porous wall. Phys. Rev. E95 (5), 053101.
[45] 2014Version Wolfram Research, Inc.
[46] Nosoko, T., Yoshimura, P. N., Nagata, T. & Oyakawa, K.1996Characteristics of two-dimensional waves on a falling liquid film. Chem. Engng Sci.51 (5), 725-732.
[47] Plateau, J. P.1849Recherches expérimentales et théoriques sur les figures d’équilibre d’une masse liquide sans pesanteur. Mémoires de l’Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique23, 1-150.
[48] Popinet, S.2009An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys.228, 5838-5866. · Zbl 1280.76020
[49] Quéré, D.1990Thin films flowing on vertical fibers. Europhys. Lett.13 (8), 721-726.
[50] Quéré, D.1999Fluid coating on a fibre. Annu. Rev. Fluid Mech.31, 347-384.
[51] 1892On the instability of cylindrical fluid surfaces. Phil. Mag.34 (207), 177-180. · JFM 24.0972.04
[52] Richard, G., Ruyer-Quil, C. & Vila, J. P.2016A three-equation model for thin films down an inclined plane. J. Fluid Mech.804, 162-200. · Zbl 1455.76017
[53] Seebauer, F., Poechlauer, P., Braune, S. & Steinhofer, S.2012 Tube bundle falling film microreactor for performing gas liquid reactions. US Patent 8221708B2.
[54] Shkadov, V. Y.1967Wave flow regimes of a thin layer of viscous fluid subject to gravity. Fluid Dyn.2 (1), 29-34.
[55] Suresh, V. & Grotberg, J. B.2005The effect of gravity on liquid plug propagation in a two-dimensional channel. Phys. Fluids17 (3), 031507. · Zbl 1187.76508
[56] Thiele, U., Velarde, M. G., Neuffer, K & Pomeau, Y.2001Sliding drops in the diffuse interface model coupled to hydrodynamics. Phys. Rev. E64 (6), 061601.
[57] Trifonov, Y. Y.1992Steady-state traveling waves on the surface of a viscous liquid film falling down on vertical wires and tubes. AIChE J.38 (6), 821-834.
[58] Trifonov, Y. Y.2010Counter-current gas-liquid wavy film flow between the vertical plates analyzed using the Navier-Stokes equations. AIChE J.56 (8), 1975-1987.
[59] Tseluiko, D. & Kalliadasis, S.2011Nonlinear waves in counter-current gas-liquid film flow. J. Fluid Mech.673, 19-59. · Zbl 1225.76044
[60] Ubal, S., Campana, D. M., Giavedoni, M. D. & Saita, F. A.2008Stability of the steady-state displacement of a liquid plug driven by a constant pressure difference along a prewetted capillary tube. Ind. Engng Chem. Res.47, 6307-6315.
[61] Vlachos, N. A., Paras, S. V., Mouza, A. A. & Karabelas, A. J.2001Visual observations of flooding in narrow rectangular channels. Intl J. Multiphase Flow27, 1415-1430. · Zbl 1137.76774
[62] Wray, A. W.2013Electrostatically controlled large-amplitude, non-axisymmetric waves in thin film flows down a cylinder. J. Fluid Mech.736, R2. · Zbl 1294.76144
[63] Xu, F. & Jensen, O.2017Trapping and displacement of liquid collars and plugs in rough-walled tubes. Phys. Rev. Fluids2, 094004.
[64] Yih, C. S.1963Stability of liquid flow down an inclined plane. Phys. Fluids6 (3), 321-334. · Zbl 0116.19102
[65] Yoshimura, P. N., Nosoko, P. & Nagata, T.1996Enhancement of mass transfer into a falling laminar liquid film by two-dimensional surface waves—some experimental observations and modeling. Chem. Engng Sci.51 (8), 1231-1240.
[66] Zapke, A. & Kröger, D. G.2000Countercurrent gas-liquid flow in inclined and vertical ducts - I: flow patterns, pressure drop characteristics and flooding. Intl J. Multiphase Flow26, 1439-1455. · Zbl 1137.76796
[67] Zhou, Z.-Q., Peng, J., Zhang, Y.-J. & Zhuge, W.-L.2016Viscoelastic liquid film flowing down a flexible tube. J. Fluid Mech.802, 583-610.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.