×

zbMATH — the first resource for mathematics

Third-order relativistic hydrodynamics: dispersion relations and transport coefficients of a dual plasma. (English) Zbl 1437.83023
Summary: Hydrodynamics is nowadays understood as an effective field theory that describes the dynamics of the long-wavelength and slow-time fluctuations of an underlying microscopic theory. In this work we extend the relativistic hydrodynamics to third order in the gradient expansion for neutral fluids in a general curved spacetime of \(d\) dimensions. We find 58 new transport coefficients, 19 due to third-order scalar corrections and 39 due to tensorial corrections. In the particular case of a conformal fluid, the number of new transport coefficients is reduced to 19, all of them due to third-order tensorial corrections. The dispersion relations of linear fluctuations in the third-order relativistic hydrodynamics is obtained, both in the rest frame of the fluid and in a general moving frame. As an application we obtain some of the transport coefficients of a relativistic conformal fluid in three dimensions by using the AdS/CFT correspondence. These transport coefficients are extracted from the dispersion relations of the linear fluctuations. The gravity dual of the fluctuations in this conformal fluid is described by the gravitational perturbations of four-dimensional anti-de Sitter black branes, which are solutions of the Einstein equations with a negative cosmological constant. To find the hydrodynamic quasinormal modes (QNMs) of the scalar sector we use the SUSY quantum mechanics of the gravitational perturbations of four-dimensional black branes. Such a symmetry allows us to find the wavefunction of the scalar (or sound) sector in the hydrodynamic limit directly from the wavefunction of the vector (or shear) sector, which is usually easier to be found because the perturbation wave equations for the vector sector are much simpler than the ones for the scalar sector.

MSC:
83C15 Exact solutions to problems in general relativity and gravitational theory
83E05 Geometrodynamics and the holographic principle
83C57 Black holes
81V05 Strong interaction, including quantum chromodynamics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Cabibbo, N.; Parisi, G., Exponential hadronic spectrum and quark liberation, Phys. Lett., B 59, 67 (1975)
[2] Busza, W.; Rajagopal, K.; van der Schee, W., Heavy ion collisions: the big picture and the big questions, Ann. Rev. Nucl. Part. Sci., 68, 339 (2018)
[3] M. Gyulassy, The QGP discovered at RHIC, in Structure and dynamics of elementary matter. Proceedings, NATO Advanced Study Institute, Camyuva-Kemer, Turkey, 22 September-2 October 2003, pg. 159 [nucl-th/0403032] [INSPIRE].
[4] S.Z. Belenkij and L.D. Landau, Hydrodynamic theory of multiple production of particles, Nuovo Cim. Suppl.3S10 (1956) 15 [Usp. Fiz. Nauk56 (1955) 309] [INSPIRE]. · Zbl 0074.23403
[5] M. Luzum and P. Romatschke, Conformal relativistic viscous hydrodynamics: applications to RHIC results at \(\sqrt{s_{NN}} = 200\) GeV, Phys. Rev.C 78 (2008) 034915 [Erratum ibid.C 79 (2009) 039903] [arXiv:0804.4015] [INSPIRE].
[6] Kapusta, JI; Müller, B.; Stephanov, M., Relativistic theory of hydrodynamic fluctuations with applications to heavy ion collisions, Phys. Rev., C 85 (2012)
[7] Derradi de Souza, R.; Koide, T.; Kodama, T., Hydrodynamic approaches in relativistic heavy ion reactions, Prog. Part. Nucl. Phys., 86, 35 (2016)
[8] Hiscock, WA; Lindblom, L., Generic instabilities in first-order dissipative relativistic fluid theories, Phys. Rev., D 31, 725 (1985)
[9] Muller, I., Zum Paradoxon der W¨armeleitungstheorie (in German), Z. Phys., 198, 329 (1967) · Zbl 0143.23602
[10] Israel, W., Nonstationary irreversible thermodynamics: a causal relativistic theory, Annals Phys., 100, 310 (1976)
[11] Israel, W.; Stewart, JM, Transient relativistic thermodynamics and kinetic theory, Annals Phys., 118, 341 (1979)
[12] Baier, R.; Romatschke, P.; Son, DT; Starinets, AO; Stephanov, MA, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP, 04, 100 (2008) · Zbl 1246.81352
[13] DiNunno, BS; Grozdanov, S.; Pedraza, JF; Young, S., Holographic constraints on Bjorken hydrodynamics at finite coupling, JHEP, 10, 110 (2017) · Zbl 1383.81204
[14] Romatschke, P., Relativistic viscous fluid dynamics and non-equilibrium entropy, Class. Quant. Grav., 27 (2010) · Zbl 1184.83026
[15] Maldacena, JM, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047
[16] Berti, E.; Cardoso, V.; Starinets, AO, Quasinormal modes of black holes and black branes, Class. Quant. Grav., 26, 163001 (2009) · Zbl 1173.83001
[17] Witten, E., Dynamical breaking of supersymmetry, Nucl. Phys., B 188, 513 (1981) · Zbl 1258.81046
[18] Witten, E., Constraints on supersymmetry breaking, Nucl. Phys., B 202, 253 (1982)
[19] Cooper, F.; Khare, A.; Sukhatme, U., Supersymmetry and quantum mechanics, Phys. Rept., 251, 267 (1995)
[20] Chandrasekhar, S., The mathematical theory of black holes (1983), Oxford, U.K: Oxford University Press, Oxford, U.K · Zbl 0511.53076
[21] Burgess, CP; Lütken, CA, Propagators and effective potentials in anti-de Sitter space, Phys. Lett., B 153, 137 (1985)
[22] Mellor, F.; Moss, I., Stability of black holes in de Sitter space, Phys. Rev., D 41, 403 (1990)
[23] P.T. Leung, A. Maassen van den Brink, W.M. Suen, C.W. Wong and K. Young, SUSY transformations for quasinormal and total transmission modes of open systems, math-ph/9909030 [INSPIRE]. · Zbl 1017.81018
[24] Bakas, I., Energy-momentum/Cotton tensor duality for AdS4 black holes, JHEP, 01, 003 (2009) · Zbl 1243.83032
[25] M. Henneaux and C. Teitelboim, Duality in linearized gravity, Phys. Rev.D 71 (2005) 024018 [gr-qc/0408101] [INSPIRE]. · Zbl 1129.83007
[26] Bakas, I., Duality in linearized gravity and holography, Class. Quant. Grav., 26 (2009) · Zbl 1162.83321
[27] Miranda, AS; Morgan, J.; Zanchin, VT; Kandus, A., Separable wave equations for gravitoelectromagnetic perturbations of rotating charged black strings, Class. Quant. Grav., 32, 235002 (2015) · Zbl 1329.83191
[28] J.P.S. Lemos, Two-dimensional black holes and planar general relativity, Class. Quant. Grav.12 (1995) 1081 [gr-qc/9407024] [INSPIRE]. · Zbl 0825.53012
[29] J.P.S. Lemos, Cylindrical black hole in general relativity, Phys. Lett.B 353 (1995) 46 [gr-qc/9404041] [INSPIRE].
[30] Huang, C-G; Liang, C-B, A torus like black hole, Phys. Lett., A 201, 27 (1995) · Zbl 1020.83608
[31] R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional space-times, Phys. Rev.D 54 (1996) 4891 [gr-qc/9609065] [INSPIRE].
[32] Lemos, JPS; Zanchin, VT, Rotating charged black string and three-dimensional black holes, Phys. Rev., D 54, 3840 (1996)
[33] V. Cardoso and J.P.S. Lemos, Quasinormal modes of toroidal, cylindrical and planar black holes in anti-de Sitter space-times, Class. Quant. Grav.18 (2001) 5257 [gr-qc/0107098] [INSPIRE]. · Zbl 0993.83019
[34] A.S. Miranda and V.T. Zanchin, Quasinormal modes of plane-symmetric anti-de Sitter black holes: a complete analysis of the gravitational perturbations, Phys. Rev.D 73 (2006) 064034 [gr-qc/0510066] [INSPIRE].
[35] Miranda, AS; Zanchin, VT, Gravitational perturbations and quasinormal modes of black holes with non-spherical topology, Int. J. Mod. Phys., D 16, 421 (2007) · Zbl 1117.83069
[36] Miranda, AS; Morgan, J.; Zanchin, VT, Quasinormal modes of plane-symmetric black holes according to the AdS/CFT correspondence, JHEP, 11, 030 (2008)
[37] Morgan, J.; Cardoso, V.; Miranda, AS; Molina, C.; Zanchin, VT, Gravitational quasinormal modes of AdS black branes in d spacetime dimensions, JHEP, 09, 117 (2009)
[38] Morgan, J.; Miranda, AS; Zanchin, VT, Electromagnetic quasinormal modes of rotating black strings and the AdS/CFT correspondence, JHEP, 03, 169 (2013) · Zbl 1342.83194
[39] de Oliveira, ES; Miranda, AS; Zanchin, VT, New results on the physical interpretation of black-brane gravitational perturbations, Phys. Rev., D 100 (2019)
[40] Taub, AH, General relativistic variational principle for perfect fluids, Phys. Rev., 94, 1468 (1954)
[41] Kovtun, P.; Moore, GD; Romatschke, P., Towards an effective action for relativistic dissipative hydrodynamics, JHEP, 07, 123 (2014)
[42] Grozdanov, S.; Polonyi, J., Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev., D 91, 105031 (2015)
[43] Haehl, FM; Loganayagam, R.; Rangamani, M., The eightfold way to dissipation, Phys. Rev. Lett., 114, 201601 (2015) · Zbl 1388.81456
[44] Haehl, FM; Loganayagam, R.; Rangamani, M., Adiabatic hydrodynamics: the eightfold way to dissipation, JHEP, 05, 060 (2015) · Zbl 1388.81456
[45] Haehl, FM; Loganayagam, R.; Rangamani, M., The fluid manifesto: emergent symmetries, hydrodynamics and black holes, JHEP, 01, 184 (2016) · Zbl 1388.83350
[46] Haehl, FM; Loganayagam, R.; Rangamani, M., Topological σ-models & dissipative hydrodynamics, JHEP, 04, 039 (2016) · Zbl 1388.83351
[47] Crossley, M.; Glorioso, P.; Liu, H., Effective field theory of dissipative fluids, JHEP, 09, 095 (2017) · Zbl 1382.81199
[48] Glorioso, P.; Crossley, M.; Liu, H., Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current, JHEP, 09, 096 (2017) · Zbl 1382.81205
[49] Haehl, FM; Loganayagam, R.; Rangamani, M., Inflow mechanism for hydrodynamic entropy, Phys. Rev. Lett., 121 (2018) · Zbl 1402.83021
[50] Haehl, FM; Loganayagam, R.; Rangamani, M., Effective action for relativistic hydrodynamics: fluctuations, dissipation and entropy inflow, JHEP, 10, 194 (2018) · Zbl 1402.83021
[51] Jensen, K.; Pinzani-Fokeeva, N.; Yarom, A., Dissipative hydrodynamics in superspace, JHEP, 09, 127 (2018) · Zbl 1398.81146
[52] Jensen, K.; Marjieh, R.; Pinzani-Fokeeva, N.; Yarom, A., A panoply of Schwinger-Keldysh transport, SciPost Phys., 5, 053 (2018)
[53] Grozdanov, S.; Kaplis, N., Constructing higher-order hydrodynamics: the third order, Phys. Rev., D 93 (2016)
[54] Lublinsky, M.; Shuryak, E., Improved hydrodynamics from the AdS/CFT, Phys. Rev., D 80 (2009)
[55] Bu, Y.; Lublinsky, M., All order linearized hydrodynamics from fluid-gravity correspondence, Phys. Rev., D 90 (2014) · Zbl 1390.83152
[56] Bu, Y.; Lublinsky, M., Linearized fluid/gravity correspondence: from shear viscosity to all order hydrodynamics, JHEP, 11, 064 (2014) · Zbl 1390.83152
[57] Bhattacharyya, S., Constraints on the second order transport coefficients of an uncharged fluid, JHEP, 07, 104 (2012)
[58] R. Jackiw, Weyl symmetry and the Liouville theory, Theor. Math. Phys.148 (2006) 941 [Teor. Mat. Fiz.148 (2006) 80] [hep-th/0511065] [INSPIRE]. · Zbl 1177.81088
[59] Jackiw, R.; Pi, S-Y, Tutorial on scale and conformal symmetries in diverse dimensions, J. Phys., A 44, 223001 (2011) · Zbl 1268.70016
[60] Farnsworth, K.; Luty, MA; Prilepina, V., Weyl versus conformal invariance in quantum field theory, JHEP, 10, 170 (2017) · Zbl 1383.81209
[61] Loganayagam, R., Entropy current in conformal hydrodynamics, JHEP, 05, 087 (2008)
[62] Diles, S., The role of Weyl symmetry in hydrodynamics, Phys. Lett., B 779, 331 (2018) · Zbl 1383.76557
[63] Romatschke, P., New developments in relativistic viscous hydrodynamics, Int. J. Mod. Phys., E 19, 1 (2010)
[64] Jaiswal, A., Relativistic third-order dissipative fluid dynamics from kinetic theory, Phys. Rev., C 88 (2013)
[65] Jaiswal, A., Relaxation-time approximation and relativistic third-order viscous hydrodynamics from kinetic theory, Nucl. Phys., A 931, 1205 (2014)
[66] Chattopadhyay, C.; Jaiswal, A.; Pal, S.; Ryblewski, R., Relativistic third-order viscous corrections to the entropy four-current from kinetic theory, Phys. Rev., C 91 (2015)
[67] Townsend, PK, D-branes from M-branes, Phys. Lett., B 373, 68 (1996)
[68] Herzog, CP, The hydrodynamics of M-theory, JHEP, 12, 026 (2002)
[69] Aharony, O.; Bergman, O.; Jafferis, DL; Maldacena, J., N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP, 10, 091 (2008) · Zbl 1245.81130
[70] Landau, LD; Lifshitz, EM, Fluid mechanics (1987), Oxford, U.K: Pergamon, Oxford, U.K
[71] Kovtun, P., Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys., A 45, 473001 (2012) · Zbl 1348.83039
[72] Policastro, G.; Son, DT; Starinets, AO, From AdS/CFT correspondence to hydrodynamics, JHEP, 09, 043 (2002)
[73] G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. 2. Sound waves, JHEP12 (2002) 054 [hep-th/0210220] [INSPIRE].
[74] Ge, X-H; Jo, K.; Sin, S-J, Hydrodynamics of RN AdS_4black hole and holographic optics, JHEP, 03, 104 (2011) · Zbl 1301.81213
[75] Brattan, DK; Gentle, SA, Shear channel correlators from hot charged black holes, JHEP, 04, 082 (2011)
[76] Bhattacharyya, S.; Lahiri, S.; Loganayagam, R.; Minwalla, S., Large rotating AdS black holes from fluid mechanics, JHEP, 09, 054 (2008) · Zbl 1245.83022
[77] Caldarelli, MM; Dias, OJC; Klemm, D., Dyonic AdS black holes from magnetohydrodynamics, JHEP, 03, 025 (2009)
[78] Klebanov, IR; Tseytlin, AA, Entropy of near extremal black p-branes, Nucl. Phys., B 475, 164 (1996) · Zbl 0925.81176
[79] Mamani, LAH; Morgan, J.; Miranda, AS; Zanchin, VT, From quasinormal modes of rotating black strings to hydrodynamics of a moving CFT plasma, Phys. Rev., D 98 (2018)
[80] M. Natsuume and T. Okamura, Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality, Phys. Rev.D 77 (2008) 066014 [Erratum ibid.D 78 (2008) 089902] [arXiv:0712.2916] [INSPIRE]. · Zbl 1193.81086
[81] Edalati, M.; Jottar, JI; Leigh, RG, Holography and the sound of criticality, JHEP, 10, 058 (2010) · Zbl 1291.81242
[82] Michalogiorgakis, G.; Pufu, SS, Low-lying gravitational modes in the scalar sector of the global AdS_4black hole, JHEP, 02, 023 (2007)
[83] Dias, ÓJC; Santos, JE, Boundary conditions for Kerr-AdS perturbations, JHEP, 10, 156 (2013) · Zbl 1342.83148
[84] P. Glorioso and H. Liu, The second law of thermodynamics from symmetry and unitarity, arXiv:1612.07705 [INSPIRE].
[85] Bhattacharyya, S.; Hubeny, VE; Minwalla, S.; Rangamani, M., Nonlinear fluid dynamics from gravity, JHEP, 02, 045 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.