zbMATH — the first resource for mathematics

Black holes and quasiblack holes: some history and remarks. (English) Zbl 1344.83033
Summary: We give a short reference to the two Schwarzschild solutions and to what Petrov had to say about them. We comment on how the Schwarzschild vacuum solution describes a black hole. Then we compare the properties, differences and similarities between black holes and quasiblack holes. Black holes are well known. Quasiblack hole is a new concept. A quasiblack hole, either nonextremal or extremal, can be broadly defined as the limiting configuration of a body when its boundary approaches the body’s own gravitational radius (the quasihorizon). Quasiblack holes are objects that are on the verge of being black holes but actually are distinct from them in many ways. We display some of their properties: there are infinite redshift whole regions; the curvature invariants remain perfectly regular everywhere, in the quasiblack hole limit; a free-falling observer finds in his own frame infinitely large tidal forces in the whole inner region, showing some form of degeneracy; outer and inner regions become mutually impenetrable and disjoint, although, in contrast to the usual black holes, this separation is of a dynamical nature, rather than purely causal; for external far away observers the spacetime is virtually indistinguishable from that of extremal black holes. We also discuss other important properties, such as the mass formula and the entropy, as compared to the corresponding properties of black holes.

83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.
83C10 Equations of motion in general relativity and gravitational theory
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
Full Text: DOI
[1] [1] Schwarzschild K., ”Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”, Sitz. Kön. Preuss. Akad. Wiss., 1916, no. 3, 189–196 · JFM 46.1296.02
[2] [2] Schwarzschild K., ”Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie”, Kön. Preuss. Akad. Wiss., 1916, no. 1, 424–434 · JFM 46.1297.01
[3] [3] Petrov A.\.Z., Einstein spaces, Pergamon Press, Oxford, 1969, 419 pp. · Zbl 0174.28305
[4] [4] Petrov A.\.Z., ”Klassifikacya prostranstv, opredelyayushchikh polya tyagoteniya”, Uchenye Zapiski Kazanskogo Universiteta, 114, no. 8, 1954, 55–69 · Zbl 0972.83007
[5] [5] Landau L. D., Lifshitz E. M., The classical theory of fields, Pergamon Press, Oxford, 1959, 385 pp. · Zbl 0178.28704
[6] [6] Petrov A.\.Z., ”Gravitational field geometry as the geometry of automorphisms”, Recent developments in general relativity, A book dedicated to the 60th birthday of L. Infeld, eds. S. Bazanski et al., Pergamon Press, Oxford, 1962, 379–386
[7] [7] Bonnor W. B., ”A source for Petrov’s homogeneous vacuum space-time”, Phys. Lett. A, 75:1–2 (1979), 25–26
[8] [8] Kruskal M. D., ”Maximal Extension of Schwarzschild Metric”, Phys. Rev., 119:5 (1960), 1743–1745 · Zbl 0098.19001
[9] [9] Ford K. W., Wheeler J. A., Geons, black holes, and quantum foam: A life in physics, W. W. Norton & Company, N.Y., 2000, 380 pp. · Zbl 0953.01023
[10] [10] Reissner H., ”Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie”, Ann. Phys. (Berlin), 355:9 (1916), 106–120
[11] [11] Nordström G., ”On the Energy of the Gravitational Field in Einstein’s Theory”, Proc. Kon. Ned. Akad. Wet., 20 (1918), 1238–1248
[12] [12] Graves J. C., Brill D. R., ”Oscillatory Character of Reissner–Nordström Metric for an Ideal Charged Wormhole”, Phys. Rev., 120:4 (1960), 1507–1513 · Zbl 0095.42202
[13] [13] Kerr R. P., ”Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics”, Phys. Rev. Lett., 11:5 (1963), 237–238 · Zbl 0112.21904
[14] [14] Newman E. T., Couch E., Chinnapared K., Exton A., Prakash A., Torrence R., ”Metric of a rotating charged mass”, J. Math. Phys., 6:6 (1965), 918–919
[15] [15] Misner C. W., Thorne K. S., Wheeler J. A., Gravitation, W. H. Freeman, San Francisco, 1973, 1215 pp.
[16] [16] Oppenheimer J. R., Snyder H., ”On Continued Gravitational Contraction”, Phys. Rev., 56:5 (1939), 455–459 · Zbl 0022.28104
[17] [17] Buchdahl H. A., ”General Relativistic Fluid Spheres”, Phys. Rev., 116:4 (1959), 1027–1034 · Zbl 0092.20802
[18] [18] Salpeter E. E., ”Accretion of interstellar matter by massive objects”, Astroph. J., 140 (1964), 796–800
[19] [19] Zel’dovich Ya. B., ”The Fate of a Star and the Evolution of Gravitational Energy upon Accretion”, Soviet Physics Doklady, 9 (1964), 195–197
[20] [20] Lynden-Bell D., ”Galactic Nuclei as Collapsed Old Quasars”, Nature, 223 (1969), 690–694
[21] [21] Lemos J. P. S., ”Black holes: from galactic nuclei to elementary particles”, Proc. 21th Annual Meeting of the Brazilian Astronomical Society, eds. F. Jablonski, F. Elizalde, L. Sodré (Jr.), V. Jablonsky, S. Paulo, 1996, 57–75, arXiv:
[22] [22] Lemos J. P. S., ”A profusion of black holes from two to ten dimensions”, Proc. 17th National Meeting of particle physics and fields, ed. A. J. Silva, University of São Paulo Press, 1997, 40–74, arXiv:
[23] [23] Lemos J. P. S., ”Black holes and fundamental physics”, Proc. 5th Int. Workshop on new worlds in astroparticle physics, eds. A. Mourão et al., World Scientific, Singapore, 2005, 71–90, arXiv:
[24] [24] Lemos J. P. S., ”Black hole entropy and the holographic principle”, Advances in physical sciences, ed. L. D. Carlos, Universidade de Aveiro Press, Aveiro, 2008, 97–118, arXiv:
[25] [25] Weyl H., ”Zur Gravitationstheorie”, Annalen der Physik, 359:19 (1917), 117–145 · JFM 46.1303.01
[26] [26] Majumdar S. D., ”A Class of Exact Solutions of Einstein’s Field Equations”, Phys. Rev., 72:5 (1947), 390–398
[27] [27] Papapetrou A., ”A static solution of the equations of the gravitational field for an arbitrary charge-distribution”, Proc. Roy. Irish Acad. A, 51 (1947), 191–204 · Zbl 0029.18401
[28] [28] Hartle J. B., Hawking S. W., ”Solutions of the Einstein–Maxwell equations with many black holes”, Comm. Math. Phys., 26:2 (1972), 87–101
[29] [29] Bonnor W. B., ”Comment on ’Relativistic charged spheres: II. Regularity and stability’ ”, Class. Quant. Grav., 16:12 (1999), 4125–4130 · Zbl 1081.83525
[30] [30] Lemos J. P. S., Weinberg E., ”Quasiblack holes from extremal charged dust”, Phys. Rev. D, 69:10 (2004), 104004-1–104004-8
[31] [31] Bardeen J., ”Non-singular general relativistic gravitational collapse”, Proc. 5th Int. conf. on general relativity and gravitation – GR5, Tbilisi, URSS, 1968, 174–176
[32] [32] Dymnikova I. G., ”Vacuum nonsingular black hole”, Gen. Rel. Grav., 24:3 (1992), 235–242
[33] [33] Ansoldi S., Spherical black holes with regular center: a review of existing models including a recent realization with Gaussian sources, 2008, 36 pp., arXiv:
[34] [34] Lemos J. P. S., Zanchin V. T., ”Regular black holes: Electrically charged solutions, Reissner–Nordström outside a de Sitter core”, Phys. Rev. D, 83 (2011), 124005-1–124005-13
[35] [35] Kleber A., Lemos J. P. S., Zanchin V. T., ”Thick shells and stars in Majumdar–Papapetrou general relativity”, J. Grav. Cosm., 11:3 (2005), 269–276 · Zbl 1093.83017
[36] [36] Lemos J. P. S., Zanchin V. T., ”Bonnor stars in \(d\) spacetime dimensions”, Phys. Rev. D, 77:6 (2008), 064003-1–064003-24
[37] [37] Bonnor W. B., ”Non-spherical quasi-black holes”, Gen. Rel. Grav., 42:8 (2010), 1825–1830 · Zbl 1197.83062
[38] [38] Lemos J. P. S., Zanchin V. T., ”Class of exact solutions of Einstein’s field equations in higher dimensional spacetimes, \(d\geq4\): Majumdar–Papapetrou solutions”, Phys. Rev. D, 71:12 (2005), 124021-1–124021-11
[39] [39] Lemos J. P. S., Zanchin V. T., ”Quasiblack holes with pressure: Relativistic charged spheres as the frozen stars”, Phys. Rev. D, 81:12 (2010), 124016-1–124016-15
[40] [40] de Felice F., Yunqiang Y., Jing F., ”Relativistic charged spheres”, Mon. Not. R. Astron. Soc., 277 (1995), L17–L19
[41] [41] de Felice F., Siming L., Yunqiang Y., ”Relativistic charged spheres: II. Regularity and stability”, Class. Quant. Grav., 16 (1999), 2669–2679 · Zbl 0961.83021
[42] [42] Guilfoyle B. S., ”Interior Weyl-type Solutions to the Einstein–Maxwell Field Equations”, Gen. Rel. Grav., 31:11 (1999), 1645–1673 · Zbl 1081.83510
[43] [43] Lemos J. P. S., Zanchin V. T., ”Electrically charged fluids with pressure in Newtonian gravitation and general relativity in \(d\) spacetime dimensions: Theorems and results for Weyl type systems”, Phys. Rev. D, 80:2 (2009), 024010-1–024010-20
[44] [44] Lue A., Weinberg E. J., ”Magnetic monopoles near the black hole threshold”, Phys. Rev. D, 60:8 (1999), 084025-1–084025-17
[45] [45] Lue A., Weinberg E. J., ”Gravitational properties of monopole spacetimes near the black hole threshold”, Phys. Rev. D, 61:12 (2000), 124003-1–124003-10
[46] [46] Lemos J. P. S., Zanchin V. T., ”Gravitational magnetic monopoles and Majumdar–Papapetrou stars”, J. Math. Phys., 47:4 (2006), 042504-1–042504-24 · Zbl 1111.83026
[47] [47] Som M. M., Bedran M. L., ”Static dust sphere in Einstein–Cartan theory”, Phys. Rev. D, 24 (1981), 2561–2563
[48] [48] Bardeen J. M., Wagoner R. V., ”Relativistic disks. I. Uniform Rotation”, Astrophys. J., 167 (1971), 359–423
[49] [49] Meinel R., ”On the black hole limit of rotating fluid bodies in equilibrium”, Class. Quantum Grav., 23:4 (2006), 1359–1369 · Zbl 1090.83020
[50] [50] Kleinwächter A., Labranche H., Meinel R., ”On the black hole limit of rotating discs and rings”, Gen. Rel. Grav., 43:5 (2011), 1469–1486 · Zbl 1215.83025
[51] [51] Penrose R., ”Black Holes and Gravitational Theory”, Nature, 236 (1972), 377–380
[52] [52] Hawking S. W., ”The event horizon”, Black Holes, eds. C. DeWitt, B. S. DeWitt, Gordon and Breach, N.Y., 1973, 1–55
[53] [53] Hawking S. W., Ellis G. F. R., The Large Scale Structure of Space-Time, Cambridge Univ. Press, Cambridge, 1973, 391 pp. · Zbl 0265.53054
[54] [54] Carter B., ”The general theory of mechanical, electromagnetic and thermodynamic properties of black holes”, General Relativity an Einstein Centenary Survey, eds. S. W. Hawking, W. Israel, Cambridge Univ. Press, Cambridge, 1979, 294–369
[55] [55] Bardeen J. M., Carter B., Hawking S. W., ”The four laws of black hole mechanics”, Commun. Math. Phys., 31:2 (1973), 161–170 · Zbl 1125.83309
[56] [56] Smarr L., ”Mass Formula for Kerr Black Holes”, Phys. Rev. Lett., 30:2 (1973), 71–73
[57] [57] Bekenstein J. D., ”Black Holes and Entropy”, Phys. Rev. D, 7:8 (1973), 2333–2346 · Zbl 1369.83037
[58] [58] Hawking S. W., ”Particle creation by black holes”, Commun. Math. Phys., 43:3 (1975), 199–220 · Zbl 1378.83040
[59] [59] Brown J. D., York J. W., ”Quasilocal energy and conserved charges derived from the gravitational action”, Phys. Rev. D, 47:4 (1993), 1407–1419
[60] [60] Lemos J. P. S., Zaslavskii O. B., ”Quasi-black holes: Definition and general properties”, Phys. Rev. D, 76:12 (2007), 084030-1–084030-12
[61] [61] Lemos J. P. S., Zaslavskii O. B., ”Black hole mimickers: Regular versus singular behavior”, Phys. Rev. D, 78:2 (2008), 024040-1–024040-14
[62] [62] Lemos J. P. S., Zaslavskii O. B., ”Quasiblack holes with pressure: General exact results”, Phys. Rev. D, 82 (2010), 0240291-1–0240291-8
[63] [63] Lemos J. P. S., Zaslavskii O. B., ”Mass formula for quasi-black holes”, Phys. Rev. D, 78:12 (2008), 124013-1–124013-10
[64] [64] Lemos J. P. S., Zaslavskii O. B., ”Angular momentum and mass formulas for rotating stationary quasiblack holes”, Phys. Rev. D, 79:4 (2009), 044020-1–044020-6
[65] [65] Lemos J. P. S., Zaslavskii O. B., ”Entropy of quasiblack holes”, Phys. Rev. D, 81:6 (2010), 064012-1–064012-9
[66] [66] Lemos J. P. S., Zaslavskii O. B., ”Entropy of extremal black holes from entropy of quasiblack holes”, Phys. Lett. B, 695:1–4 (2011), 37–40
[67] [67] Thorne K. S., MacDonald D. A., Price R. H., Black holes: The membrane paradigm, Yale Univ. Press, Yale, 1986, 352 pp. · Zbl 1374.83002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.