×

zbMATH — the first resource for mathematics

Hydrodynamics of simply spinning black holes & hydrodynamics for spinning quantum fluids. (English) Zbl 1457.83033
Summary: We find hydrodynamic behavior in large simply spinning five-dimensional Anti-de Sitter black holes. These are dual to spinning quantum fluids through the AdS/CFT correspondence constructed from string theory. Due to the spatial anisotropy introduced by the angular momentum, hydrodynamic transport coefficients are split into groups longitudinal or transverse to the angular momentum, and aligned or anti-aligned with it. Analytic expressions are provided for the two shear viscosities, the longitudinal momentum diffusion coefficient, two speeds of sound, and two sound attenuation coefficients. Known relations between these coefficients are generalized to include dependence on angular momentum. The shear viscosity to entropy density ratio varies between zero and \(1/(4 \pi )\) depending on the direction of the shear. These results can be applied to heavy ion collisions, in which the most vortical fluid was reported recently. In passing, we show that large simply spinning five-dimensional Myers-Perry black holes are perturbatively stable for all angular momenta below extremality.

MSC:
83C57 Black holes
83C47 Methods of quantum field theory in general relativity and gravitational theory
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
Software:
QNMspectral
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Maldacena, JM, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047
[2] Myers, RC; Perry, MJ, Black Holes in Higher Dimensional Space-Times, Annals Phys., 172, 304 (1986) · Zbl 0601.53081
[3] STAR collaboration, Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid, Nature548 (2017) 62 [arXiv:1701.06657] [INSPIRE].
[4] X.-G. Huang, Vorticity and Spin Polarization — A Theoretical Perspective, arXiv:2002.07549 [INSPIRE].
[5] Florkowski, W.; Kumar, A.; Ryblewski, R., Relativistic hydrodynamics for spin-polarized fluids, Prog. Part. Nucl. Phys., 108, 103709 (2019)
[6] Becattini, F.; Chandra, V.; Del Zanna, L.; Grossi, E., Relativistic distribution function for particles with spin at local thermodynamical equilibrium, Annals Phys., 338, 32 (2013) · Zbl 1348.76197
[7] Xie, Y.; Glastad, RC; Csernai, LP, Λ polarization in an exact rotating and expanding fluid dynamical model for peripheral heavy ion reactions, Phys. Rev. C, 92 (2015)
[8] Florkowski, W.; Friman, B.; Jaiswal, A.; Speranza, E., Relativistic fluid dynamics with spin, Phys. Rev. C, 97 (2018)
[9] Nair, VP; Ray, R.; Roy, S., Fluids, Anomalies and the Chiral Magnetic Effect: A Group-Theoretic Formulation, Phys. Rev. D, 86 (2012)
[10] Karabali, D.; Nair, VP, Relativistic Particle and Relativistic Fluids: Magnetic Moment and Spin-Orbit Interactions, Phys. Rev. D, 90, 105018 (2014)
[11] Hawking, SW; Hunter, CJ; Taylor, M., Rotation and the AdS/CFT correspondence, Phys. Rev. D, 59 (1999)
[12] Hawking, SW; Reall, HS, Charged and rotating AdS black holes and their CFT duals, Phys. Rev. D, 61 (2000)
[13] Gibbons, GW; Perry, MJ; Pope, CN, The First law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav., 22, 1503 (2005) · Zbl 1068.83010
[14] Martinez, M.; Strickland, M., Dissipative Dynamics of Highly Anisotropic Systems, Nucl. Phys. A, 848, 183 (2010)
[15] Martinez, M.; Strickland, M., Non-boost-invariant anisotropic dynamics, Nucl. Phys. A, 856, 68 (2011)
[16] Ryblewski, R.; Florkowski, W., Non-boost-invariant motion of dissipative and highly anisotropic fluid, J. Phys. G, 38 (2011)
[17] Ryblewski, R.; Florkowski, W., Highly-anisotropic and strongly-dissipative hydrodynamics with transverse expansion, Eur. Phys. J. C, 71, 1761 (2011)
[18] Ryblewski, R.; Florkowski, W., Highly-anisotropic hydrodynamics in 3+1 space-time dimensions, Phys. Rev. C, 85 (2012)
[19] W. Florkowski, M. Martinez, R. Ryblewski and M. Strickland, Anisotropic hydrodynamics — basic concepts, PoS(ConfinementX)221 [arXiv:1301.7539] [INSPIRE].
[20] Strickland, M., Anisotropic Hydrodynamics: Three lectures, Acta Phys. Polon. B, 45, 2355 (2014) · Zbl 1371.81388
[21] Erdmenger, J.; Kerner, P.; Zeller, H., Non-universal shear viscosity from Einstein gravity, Phys. Lett. B, 699, 301 (2011)
[22] Erdmenger, J.; Rangamani, M.; Steinfurt, S.; Zeller, H., Hydrodynamic Regimes of Spinning Black D3-branes, JHEP, 02, 026 (2015)
[23] Huang, X-G; Sedrakian, A.; Rischke, DH, Kubo formulae for relativistic fluids in strong magnetic fields, Annals Phys., 326, 3075 (2011) · Zbl 1254.85005
[24] Ammon, M.; Kaminski, M.; Koirala, R.; Leiber, J.; Wu, J., Quasinormal modes of charged magnetic black branes & chiral magnetic transport, JHEP, 04, 067 (2017) · Zbl 1378.81100
[25] M. Ammon et al., Chiral hydrodynamics in strong magnetic fields, to appear.
[26] Kovtun, P., First-order relativistic hydrodynamics is stable, JHEP, 10, 034 (2019) · Zbl 1427.83083
[27] Hoult, RE; Kovtun, P., Stable and causal relativistic Navier-Stokes equations, JHEP, 06, 067 (2020) · Zbl 1437.83114
[28] Gale, C.; Jeon, S.; Schenke, B.; Tribedy, P.; Venugopalan, R., Event-by-event anisotropic flow in heavy-ion collisions from combined Yang-Mills and viscous fluid dynamics, Phys. Rev. Lett., 110 (2013)
[29] Niemi, H.; Denicol, GS; Huovinen, P.; Molnar, E.; Rischke, DH, Influence of the shear viscosity of the quark-gluon plasma on elliptic flow in ultrarelativistic heavy-ion collisions, Phys. Rev. Lett., 106, 212302 (2011)
[30] Critelli, R.; Finazzo, SI; Zaniboni, M.; Noronha, J., Anisotropic shear viscosity of a strongly coupled non-Abelian plasma from magnetic branes, Phys. Rev. D, 90 (2014)
[31] Rebhan, A.; Steineder, D., Violation of the Holographic Viscosity Bound in a Strongly Coupled Anisotropic Plasma, Phys. Rev. Lett., 108 (2012)
[32] Natsuume, M.; Ohta, M., The Shear viscosity of holographic superfluids, Prog. Theor. Phys., 124, 931 (2010) · Zbl 1213.82104
[33] Kats, Y.; Petrov, P., Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP, 01, 044 (2009) · Zbl 1243.81159
[34] Brigante, M.; Liu, H.; Myers, RC; Shenker, S.; Yaida, S., Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D, 77, 126006 (2008)
[35] Brigante, M.; Liu, H.; Myers, RC; Shenker, S.; Yaida, S., The Viscosity Bound and Causality Violation, Phys. Rev. Lett., 100, 191601 (2008)
[36] T. Ciobanu and D.M. Ramirez, Shear hydrodynamics, momentum relaxation, and the KSS bound, arXiv:1708.04997 [INSPIRE].
[37] Burikham, P.; Poovuttikul, N., Shear viscosity in holography and effective theory of transport without translational symmetry, Phys. Rev. D, 94, 106001 (2016)
[38] Hartnoll, SA; Ramirez, DM; Santos, JE, Entropy production, viscosity bounds and bumpy black holes, JHEP, 03, 170 (2016) · Zbl 1388.83457
[39] Bhattacharyya, S.; Lahiri, S.; Loganayagam, R.; Minwalla, S., Large rotating AdS black holes from fluid mechanics, JHEP, 09, 054 (2008) · Zbl 1245.83022
[40] Morgan, J.; Miranda, AS; Zanchin, VT, Electromagnetic quasinormal modes of rotating black strings and the AdS/CFT correspondence, JHEP, 03, 169 (2013) · Zbl 1342.83194
[41] Miranda, AS; Morgan, J.; Zanchin, VT; Kandus, A., Separable wave equations for gravitoelectromagnetic perturbations of rotating charged black strings, Class. Quant. Grav., 32, 235002 (2015) · Zbl 1329.83191
[42] Mamani, LAH; Morgan, J.; Miranda, AS; Zanchin, VT, From quasinormal modes of rotating black strings to hydrodynamics of a moving CFT plasma, Phys. Rev. D, 98 (2018)
[43] Murata, K.; Soda, J., A Note on separability of field equations in Myers-Perry spacetimes, Class. Quant. Grav., 25 (2008) · Zbl 1136.83324
[44] Murata, K., Instabilities of Kerr-AdS_5× S^5Spacetime, Prog. Theor. Phys., 121, 1099 (2009) · Zbl 1171.83003
[45] Murata, K.; Soda, J., Stability of Five-dimensional Myers-Perry Black Holes with Equal Angular Momenta, Prog. Theor. Phys., 120, 561 (2008) · Zbl 1162.83012
[46] Shibata, M.; Yoshino, H., Nonaxisymmetric instability of rapidly rotating black hole in five dimensions, Phys. Rev. D, 81 (2010)
[47] Dias, OJC; Figueras, P.; Monteiro, R.; Reall, HS; Santos, JE, An instability of higher-dimensional rotating black holes, JHEP, 05, 076 (2010) · Zbl 1287.83031
[48] Dias, OJC; Santos, JE, Boundary Conditions for Kerr-AdS Perturbations, JHEP, 10, 156 (2013) · Zbl 1342.83148
[49] Cardoso, V.; Dias, OJC; Hartnett, GS; Lehner, L.; Santos, JE, Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS, JHEP, 04, 183 (2014) · Zbl 1333.83063
[50] Green, SR; Hollands, S.; Ishibashi, A.; Wald, RM, Superradiant instabilities of asymptotically anti-de Sitter black holes, Class. Quant. Grav., 33, 125022 (2016) · Zbl 1342.83069
[51] B. Ganchev, Superradiant instability in AdS, arXiv:1608.01798 [INSPIRE].
[52] J. Sullivan, The Superradiant Instability in AdS, arXiv:1704.00593 [INSPIRE].
[53] Chesler, PM; Lowe, DA, Nonlinear Evolution of the AdS_4Superradiant Instability, Phys. Rev. Lett., 122, 181101 (2019)
[54] G. Aminov, A. Grassi and Y. Hatsuda, Black Hole Quasinormal Modes and Seiberg-Witten Theory, arXiv:2006.06111 [INSPIRE].
[55] Horowitz, GT; Hubeny, VE, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D, 62 (2000)
[56] McInnes, B.; Teo, E., Generalized planar black holes and the holography of hydrodynamic shear, Nucl. Phys. B, 878, 186 (2014) · Zbl 1284.81299
[57] McInnes, B., Angular Momentum in QGP Holography, Nucl. Phys. B, 887, 246 (2014) · Zbl 1325.81192
[58] McInnes, B., A rotation/magnetism analogy for the quark-gluon plasma, Nucl. Phys. B, 911, 173 (2016) · Zbl 1346.81131
[59] B. McInnes, Jet Quenching in The Most Vortical Fluid: A Holographic Approach, arXiv:1710.07442 [INSPIRE].
[60] I.Y. Aref ’eva, A.A. Golubtsova and E. Gourgoulhon, Holographic drag force in 5d Kerr-AdS black hole, arXiv:2004.12984 [INSPIRE].
[61] Caldarelli, MM; Cognola, G.; Klemm, D., Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav., 17, 399 (2000) · Zbl 0945.83019
[62] Klemm, D.; Maiorana, A., Fluid dynamics on ultrastatic spacetimes and dual black holes, JHEP, 07, 122 (2014) · Zbl 1333.83145
[63] Berman, DS; Parikh, MK, Holography and rotating AdS black holes, Phys. Lett. B, 463, 168 (1999) · Zbl 0994.83028
[64] D. Klemm, V. Moretti and L. Vanzo, Rotating topological black holes, Phys. Rev. D57 (1998) 6127 [Erratum ibid.60 (1999) 109902] [gr-qc/9710123] [INSPIRE].
[65] Bantilan, H.; Ishii, T.; Romatschke, P., Holographic Heavy-Ion Collisions: Analytic Solutions with Longitudinal Flow, Elliptic Flow and Vorticity, Phys. Lett. B, 785, 201 (2018)
[66] Dey, S.; De, S.; Majhi, BR, Gravity dual of Navier-Stokes equation in a rotating frame through parallel transport, Phys. Rev. D, 102 (2020)
[67] Chou, C-J; Wu, X.; Yang, Y.; Yuan, P-H, Rotating Black Holes and Coriolis Effect, Phys. Lett. B, 761, 131 (2016) · Zbl 1366.83034
[68] Amoozad, Z.; Sadeghi, J., Diffusion constant of slowly rotating black three-brane, Phys. Lett. B, 776, 58 (2018) · Zbl 1380.81260
[69] Bredberg, I.; Keeler, C.; Lysov, V.; Strominger, A., Wilsonian Approach to Fluid/Gravity Duality, JHEP, 03, 141 (2011) · Zbl 1301.81165
[70] Lysov, V., Dual Fluid for the Kerr Black Hole, JHEP, 06, 080 (2018) · Zbl 1402.83057
[71] Hawking, SW; Page, DN, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys., 87, 577 (1983)
[72] Klebanov, IR; Kutasov, D.; Murugan, A., Entanglement as a probe of confinement, Nucl. Phys. B, 796, 274 (2008) · Zbl 1219.81214
[73] Gibbons, GW; Lü, H.; Page, DN; Pope, CN, Rotating black holes in higher dimensions with a cosmological constant, Phys. Rev. Lett., 93, 171102 (2004)
[74] Kodama, H.; Konoplya, RA; Zhidenko, A., Gravitational stability of simply rotating Myers-Perry black holes: Tensorial perturbations, Phys. Rev. D, 81 (2010)
[75] Bardeen, JM; Carter, B.; Hawking, SW, The Four laws of black hole mechanics, Commun. Math. Phys., 31, 161 (1973) · Zbl 1125.83309
[76] Bekenstein, JD, Black holes and entropy, Phys. Rev. D, 7, 2333 (1973) · Zbl 1369.83037
[77] Ishii, T.; Murata, K., Black resonators and geons in AdS5, Class. Quant. Grav., 36, 125011 (2019)
[78] Kinoshita, S.; Mukohyama, S.; Nakamura, S.; Oda, K-y, A Holographic Dual of Bjorken Flow, Prog. Theor. Phys., 121, 121 (2009) · Zbl 1168.81022
[79] Ammon, M.; Filev, VG; Tarrio, J.; Zoakos, D., D3/D7 Quark-Gluon Plasma with Magnetically Induced Anisotropy, JHEP, 09, 039 (2012)
[80] Mateos, D.; Trancanelli, D., Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma, JHEP, 07, 054 (2011) · Zbl 1298.81400
[81] Ishii, T.; Murata, K.; Santos, JE; Way, B., Superradiant instability of black resonators and geons, JHEP, 07, 206 (2020)
[82] O. Čertík, Wigner d function, in Theoretical Physics Reference, chapter 3.37 (2009).
[83] E.W. Weisstein, Wigner d-function, (2020).
[84] Hu, BL, Separation of tensor equations in a homogeneous space by group theoretical methods, J. Math. Phys., 15, 1748 (1974)
[85] M. Kimura, K. Murata, H. Ishihara and J. Soda, Stability of Squashed Kaluza-Klein Black Holes, Phys. Rev. D77 (2008) 064015 [Erratum ibid.96 (2017) 089902] [arXiv:0712.4202] [INSPIRE].
[86] Kovtun, PK; Starinets, AO, Quasinormal modes and holography, Phys. Rev. D, 72 (2005)
[87] Janiszewski, S.; Kaminski, M., Quasinormal modes of magnetic and electric black branes versus far from equilibrium anisotropic fluids, Phys. Rev. D, 93 (2016)
[88] Festuccia, G.; Liu, H., A Bohr-Sommerfeld quantization formula for quasinormal frequencies of AdS black holes, Adv. Sci. Lett., 2, 221 (2009)
[89] Fuini, JF; Uhlemann, CF; Yaffe, LG, Damping of hard excitations in strongly coupled \(\mathcal{N} = 4\) plasma, JHEP, 12, 042 (2016) · Zbl 1390.83159
[90] Garbiso, M.; Kaminski, M., Dispersion relations in non-relativistic two-dimensional materials from quasinormal modes in Hˇorava Gravity, JHEP, 10, 087 (2019) · Zbl 1427.83065
[91] Policastro, G.; Son, DT; Starinets, AO, From AdS/CFT correspondence to hydrodynamics, JHEP, 09, 043 (2002)
[92] Erdmenger, J.; Kaminski, M.; Rust, F., Holographic vector mesons from spectral functions at finite baryon or isospin density, Phys. Rev. D, 77 (2008)
[93] Kaminski, M., Holographic quark gluon plasma with flavor, Fortsch. Phys., 57, 3 (2009) · Zbl 1172.82013
[94] Abbasi, N.; Naderi, K.; Taghinavaz, F., Hydrodynamic Excitations from Chiral Kinetic Theory and the Hydrodynamic Frames, JHEP, 03, 191 (2018) · Zbl 1388.81615
[95] G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. 2. Sound waves, JHEP12 (2002) 054 [hep-th/0210220] [INSPIRE].
[96] Buchel, A.; Liu, JT, Universality of the shear viscosity in supergravity, Phys. Rev. Lett., 93 (2004)
[97] Kovtun, P.; Son, DT; Starinets, AO, Holography and hydrodynamics: Diffusion on stretched horizons, JHEP, 10, 064 (2003)
[98] Policastro, G.; Son, DT; Starinets, AO, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett., 87 (2001)
[99] Kovtun, P.; Son, DT; Starinets, AO, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett., 94, 111601 (2005)
[100] M. Garbiso and M. Kaminski, Quasinormal Modes of 5D Spinning Black Holes in AdS, work in progress. · Zbl 1427.83065
[101] Abbasi, N.; Davody, A.; Hejazi, K.; Rezaei, Z., Hydrodynamic Waves in an Anomalous Charged Fluid, Phys. Lett. B, 762, 23 (2016) · Zbl 1391.76878
[102] Abbasi, N.; Allahbakhshi, D.; Davody, A.; Taghavi, SF, Hydrodynamic excitations in hot QCD plasma, Phys. Rev. D, 96, 126002 (2017)
[103] Kalaydzhyan, T.; Murchikova, E., Thermal chiral vortical and magnetic waves: new excitation modes in chiral fluids, Nucl. Phys. B, 919, 173 (2017) · Zbl 1361.82032
[104] Grozdanov, S.; Poovuttikul, N., Generalised global symmetries in holography: magnetohydrodynamic waves in a strongly interacting plasma, JHEP, 04, 141 (2019)
[105] Grozdanov, S.; Hofman, DM; Iqbal, N., Generalized global symmetries and dissipative magnetohydrodynamics, Phys. Rev. D, 95 (2017)
[106] S.I. Finazzo, R. Critelli, R. Rougemont and J. Noronha, Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields, Phys. Rev. D94 (2016) 054020 [Erratum ibid.96 (2017) 019903] [arXiv:1605.06061] [INSPIRE].
[107] Hernandez, J.; Kovtun, P., Relativistic magnetohydrodynamics, JHEP, 05, 001 (2017) · Zbl 1380.83108
[108] Kovtun, P.; Shukla, A., Kubo formulas for thermodynamic transport coefficients, JHEP, 10, 007 (2018) · Zbl 1402.83048
[109] Gallegos, AD; Gürsoy, U., Holographic spin liquids and Lovelock Chern-Simons gravity, JHEP, 11, 151 (2020)
[110] Edalati, M.; Jottar, JI; Leigh, RG, Shear Modes, Criticality and Extremal Black Holes, JHEP, 04, 075 (2010) · Zbl 1272.81150
[111] U. Moitra, S.K. Sake and S.P. Trivedi, Near-Extremal Fluid Mechanics, arXiv:2005.00016 [INSPIRE].
[112] Starinets, AO, Quasinormal spectrum and the black hole membrane paradigm, Phys. Lett. B, 670, 442 (2009)
[113] Kaminski, M.; Moroz, S., Nonrelativistic parity-violating hydrodynamics in two spatial dimensions, Phys. Rev. B, 89, 115418 (2014)
[114] Jensen, K.; Karch, A., Revisiting non-relativistic limits, JHEP, 04, 155 (2015) · Zbl 1388.83355
[115] Davison, RA; Grozdanov, S.; Janiszewski, S.; Kaminski, M., Momentum and charge transport in non-relativistic holographic fluids from Hǒrava gravity, JHEP, 11, 170 (2016) · Zbl 1390.83155
[116] Janik, RA; Peschanski, RB, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D, 73 (2006)
[117] Chesler, PM; Yaffe, LG, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett., 102, 211601 (2009)
[118] Chesler, PM; Yaffe, LG, Holography and colliding gravitational shock waves in asymptotically AdS_5spacetime, Phys. Rev. Lett., 106 (2011)
[119] Cartwright, C.; Kaminski, M., Correlations far from equilibrium in charged strongly coupled fluids subjected to a strong magnetic field, JHEP, 09, 072 (2019) · Zbl 1423.81154
[120] C. Cartwright, Entropy production far from equilibrium in a chiral charged plasma in the presence of external electromagnetic fields, arXiv:2003.04325 [INSPIRE].
[121] M.F. Wondrak, M. Kaminski and M. Bleicher, Shear transport far from equilibrium via holography, arXiv:2002.11730 [INSPIRE].
[122] Wondrak, MF; Kaminski, M.; Nicolini, P.; Bleicher, M., AdS/CFT far from equilibrium in a Vaidya setup, J. Phys. Conf. Ser., 942 (2017)
[123] Endrodi, G.; Kaminski, M.; Schafer, A.; Wu, J.; Yaffe, L., Universal Magnetoresponse in QCD and \(\mathcal{N} = 4\) SYM, JHEP, 09, 070 (2018)
[124] Piotrowska, J.; Miller, JM; Schnetter, E., Spectral Methods in the Presence of Discontinuities, J. Comput. Phys., 390, 527 (2019)
[125] Jansen, A., Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes, Eur. Phys. J. Plus, 132, 546 (2017)
[126] K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: Prescription, Renormalization and Examples, JHEP05 (2009) 085 [arXiv:0812.2909] [INSPIRE].
[127] K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett.101 (2008) 081601 [arXiv:0805.0150] [INSPIRE]. · Zbl 1228.81244
[128] Amado, I.; Kaminski, M.; Landsteiner, K., Hydrodynamics of Holographic Superconductors, JHEP, 05, 021 (2009)
[129] Kaminski, M.; Landsteiner, K.; Mas, J.; Shock, JP; Tarrio, J., Holographic Operator Mixing and Quasinormal Modes on the Brane, JHEP, 02, 021 (2010) · Zbl 1270.81178
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.