×

zbMATH — the first resource for mathematics

Electro-osmosis of superimposed fluids in the presence of modulated charged surfaces in narrow confinements. (English) Zbl 1382.76292
Summary: In the present study, we attempt to analyse the electro-osmotic flow of two superimposed fluids through narrow confinements in the presence of axially modulated surface charges. We attempt to solve for the flow structure as well as the interface deformation by both analytical and numerical techniques. Approximate analytical solutions are obtained through asymptotic analysis for low deformations, whereas numerical solutions are obtained by applying the phase field formalism; the numerical solutions are obtained for small as well as large interfacial deformations. The analytical solutions are derived only for the transient deformation of the interface, neglecting the transience in the flow, i.e. the flow is assumed to be quasisteady. The numerical solutions, however, are derived including the effects of inertia and transients in the flow. We attempt to compare our analytical and numerical results and explore the effects of several physico-chemical parameters on the deformation of the interface as well as the nature of the flow. Our analysis reveals that parameters such as the modulation wavelength, surface tension (described through the capillary number), viscosity ratio, permittivity ratio and extent of asymmetry in the potential on the two walls are the major contributors to the deformation and the resulting flow features.

MSC:
76W05 Magnetohydrodynamics and electrohydrodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112008001456 · Zbl 1145.76045
[2] DOI: 10.1088/0960-1317/15/12/011
[3] DOI: 10.1002/adfm.200500470
[4] DOI: 10.1021/la0472100
[5] DOI: 10.1016/j.ijmultiphaseflow.2012.03.010
[6] Uguz, Phys. Fluids 20 (2008)
[7] DOI: 10.1017/S0022112006009712 · Zbl 1147.76574
[8] DOI: 10.1017/S002211200700986X · Zbl 1165.76061
[9] DOI: 10.1063/1.2909660 · Zbl 1182.76776
[10] DOI: 10.1016/j.jnnfm.2007.02.003 · Zbl 1195.76187
[11] Israelachvili, Intermolecular and Surface Forces (2011)
[12] DOI: 10.1016/j.ijheatmasstransfer.2009.10.011 · Zbl 1192.78031
[13] Ghosh, Phys. Rev. E 88 (2013)
[14] Ghosh, Phys. Rev. E 85 (2012)
[15] DOI: 10.1016/j.colsurfa.2005.05.068
[16] DOI: 10.1063/1.3361158 · Zbl 1188.76159
[17] DOI: 10.1016/0021-9797(88)90191-9
[18] Sugioka, Phys. Rev. E 81 (2010)
[19] Subramanian, The Motion of Bubbles and Drops in Reduced Gravity (2005)
[20] DOI: 10.1146/annurev.fluid.36.050802.122124 · Zbl 1076.76076
[21] DOI: 10.1017/S0022112004009309 · Zbl 1093.76065
[22] DOI: 10.1017/jfm.2013.521 · Zbl 1294.76099
[23] DOI: 10.1209/epl/i2001-00183-2
[24] DOI: 10.1038/35002540
[25] DOI: 10.1122/1.4749836
[26] Qian, Phys. Rev. E 68 (2003)
[27] DOI: 10.1016/j.electacta.2006.02.002
[28] DOI: 10.1063/1.3647582 · Zbl 06423204
[29] Mortensen, Phys. Rev. E 71 (2005)
[30] DOI: 10.1039/C4SM01583E
[31] DOI: 10.1103/PhysRevE.88.023022
[32] DOI: 10.1103/PhysRevE.90.013003
[33] DOI: 10.1146/annurev.fl.01.010169.000551
[34] DOI: 10.1007/s10404-013-1262-1
[35] Mandal, Phys. Rev. E 89 (2014)
[36] DOI: 10.1007/s10404-010-0725-x
[37] DOI: 10.1007/s10404-010-0732-y
[38] DOI: 10.1007/s10404-009-0402-0
[39] Li, Phys. Fluids 21 (2009)
[40] DOI: 10.1017/CBO9780511800245
[41] DOI: 10.1006/jcph.1999.6332 · Zbl 0966.76060
[42] DOI: 10.1063/1.1979522 · Zbl 1187.76522
[43] Wu, Appl. Phys. Lett. 86 (2005)
[44] DOI: 10.1016/S0925-4005(03)00451-9
[45] DOI: 10.1088/0960-1317/17/2/023
[46] DOI: 10.1063/1.3431043 · Zbl 1190.76041
[47] DOI: 10.1103/PhysRevE.89.032409
[48] DOI: 10.1016/j.ijmultiphaseflow.2011.08.004
[49] DOI: 10.1017/S0022112009992217 · Zbl 1189.76159
[50] DOI: 10.1002/elps.201300428
[51] Das, Phys. Rev. Lett. 108 (2012)
[52] DOI: 10.1016/j.jcis.2011.01.107
[53] DOI: 10.1016/j.jcis.2007.03.033
[54] DOI: 10.1016/j.ijheatmasstransfer.2013.08.096
[55] Chang, Phys. Rev. E 77 (2008)
[56] DOI: 10.1017/S0022112079000562 · Zbl 0402.76007
[57] DOI: 10.1039/b503626g
[58] Chakraborty, Phys. Rev. Lett. 101 (2008)
[59] DOI: 10.1016/j.jcis.2007.02.089
[60] DOI: 10.1103/PhysRevLett.99.094504
[61] DOI: 10.1017/S0022112009992771 · Zbl 1189.76775
[62] DOI: 10.1103/PhysRevLett.110.078305
[63] DOI: 10.1016/S0021-9991(03)00280-8 · Zbl 1076.76517
[64] DOI: 10.1146/annurev.fluid.30.1.139 · Zbl 1398.76051
[65] DOI: 10.1017/jfm.2011.197 · Zbl 1241.76231
[66] DOI: 10.1103/PhysRevE.65.016301
[67] Zhang, Phys. Rev. E 73 (2006)
[68] DOI: 10.1103/PhysRevE.53.4996
[69] DOI: 10.1017/S0022112004000370 · Zbl 1130.76437
[70] DOI: 10.1103/PhysRevLett.75.755
[71] DOI: 10.1063/1.2798806 · Zbl 1182.76849
[72] DOI: 10.1016/j.jcis.2012.12.013
[73] DOI: 10.1016/j.nantod.2009.02.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.