×

Infinitely many solutions for fractional Schrödinger equations with perturbation via variational methods. (English) Zbl 1377.35272

Summary: Using variational methods, we investigate the solutions of a class of fractional Schrödinger equations with perturbation. The existence criteria of infinitely many solutions are established by symmetric mountain pass theorem, which extend the results in the related study. An example is also given to illustrate our results.

MSC:

35R11 Fractional partial differential equations
35A15 Variational methods applied to PDEs
35B20 Perturbations in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nezza E. Di., Palatucci G., Valdinoci E., Hitchhiker’s guide to the fractional sobolev spaces, Bull. des Sci.Math., 2012, 136, 521-573; Nezza, E. Di.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional sobolev spaces, Bull. des Sci.Math., 136, 521-573 (2012) · Zbl 1252.46023
[2] Zhou Y., Jiao F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal: RWA., 2010, 11, 4465-4475; Zhou, Y.; Jiao, F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal: RWA, 11, 4465-4475 (2010) · Zbl 1260.34017
[3] Zhou Y., Jiao F., Li J., Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal: TMA.,2009, 7, 3249-3256; Zhou, Y.; Jiao, F.; Li, J., Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal: TMA, 7, 3249-3256 (2009) · Zbl 1177.34084
[4] Kilbas A.A., Srivastava M.H., Trujillo J.J., Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics studies. vol.204, Elsevier ScienceB.V, Amsterdam, 2006; Kilbas, A. A.; Srivastava, M. H.; Trujillo, J. J., North-Holland Mathematics studies, 204 (2006) · Zbl 1092.45003
[5] Lakshmikantham V., Leela S., Vasundhara D.J., Theory of fractional dynamic systems, Cambridge Scientific Publishers, Cambridge, 2009; Lakshmikantham, V.; Leela, S.; Vasundhara, D. J., Theory of fractional dynamic systems (2009) · Zbl 1188.37002
[6] Podlubny I., Fractional differential equations, Academic Press, New York, 1999; Podlubny, I., Fractional differential equations (1999) · Zbl 0918.34010
[7] Tarasov V.E., Fractional dynamics: application of fractional calculus to dynamics of particles, fields and media, Springer, HEP, 2011; Tarasov, V. E., fields and media (2011) · Zbl 1214.81004
[8] Laskin N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A., 2000, 268, 298-305; Laskin, N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268, 298-305 (2000) · Zbl 0948.81595
[9] Laskin N., Fractional Schrödinger equation, Phys. Rev. E., 2002, 66, 056108 [7]; Laskin, N., Fractional Schrödinger equation, Phys. Rev. E, 66, 056108 (2002) · Zbl 1425.81007
[10] Secchi S., Ground state solutions for nonlinear fractional Schrödinger equations in \(R^N\), J. Math. Phys.,2013, 54, 031501; Secchi, S., Ground state solutions for nonlinear fractional Schrödinger equations in \(R^N\), J. Math. Phys., 54, 031501 (2013) · Zbl 1281.81034
[11] Autuori G., Pucci P., Elliptic problems involving the fractional Laplacian in \(R^N\), J. Diff .Equ., 2013, 255, 2340-2362; Autuori, G.; Pucci, P., Elliptic problems involving the fractional Laplacian in \(R^N\), J. Diff .Equ., 255, 2340-2362 (2013) · Zbl 1284.35171
[12] Felmer P., Quaas A., Tan J., Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinb., 2012, 142A, 1237-1262; Felmer, P.; Quaas, A.; Tan, J., Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinb., 142A, 1237-1262 (2012) · Zbl 1290.35308
[13] Chang X., Wang Z., Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 2013, 26, 479-494; Chang, X.; Wang, Z., Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26, 479-494 (2013) · Zbl 1276.35080
[14] Secchi S., Perturbation results for some nonlinear equations involving fractional operators, Diff .Equ. Appl., 2013, 5, 221-236; Secchi, S., Perturbation results for some nonlinear equations involving fractional operators, Diff .Equ. Appl., 5, 221-236 (2013) · Zbl 1273.35254
[15] Wu D., Existence and stability of standing waves for nonlinear fractional Schrödinger equations with Hartree type nonlinearity, J. Math. Anal. Appl.,2014, 411, 530-542; Wu, D., Existence and stability of standing waves for nonlinear fractional Schrödinger equations with Hartree type nonlinearity, J. Math. Anal. Appl., 411, 530-542 (2014) · Zbl 1332.35343
[16] Zheng X., Wang J., Symmetry results for systems involving fractional Laplacian, Indian. J. Pure. Appl. Math., 2014, 45, 39-51; Zheng, X.; Wang, J., Symmetry results for systems involving fractional Laplacian, Indian. J. Pure. Appl. Math., 45, 39-51 (2014) · Zbl 1327.35420
[17] Xu J., Wei Z., Dong W., Existence of weak solutions for a fractional Schrödinger equation, Commun Nonlinear Sci Numer Simulat., 2015, 22, 1215-1222; Xu, J.; Wei, Z.; Dong, W., Existence of weak solutions for a fractional Schrödinger equation, Commun Nonlinear Sci Numer Simulat., 22, 1215-1222 (2015) · Zbl 1331.35379
[18] Gou T., Sun H., Solutions of nonlinear Schrödinger equation with fractional Laplacian without the Ambrosetti-Rabinowitz condition, Appl. Math. Comput., 2015, 257, 409-416; Gou, T.; Sun, H., Solutions of nonlinear Schrödinger equation with fractional Laplacian without the Ambrosetti-Rabinowitz condition, Appl. Math. Comput., 257, 409-416 (2015) · Zbl 1338.35463
[19] Teng K., Multiple solutions for a class of fractional Schrödinger equations in \(R^N\), Nonlinear Anal. RWA., 2015, 21, 76-86; Teng, K., Multiple solutions for a class of fractional Schrödinger equations in \(R^N\), Nonlinear Anal. RWA, 21, 76-86 (2015) · Zbl 1302.35415
[20] Zhang W., Tang X., Zhang J., Infinitely many radial and non-radial solutions for a fractional Schrödinger equation, Comput. Math. Appl., 2016, 71, 737-747; Zhang, W.; Tang, X.; Zhang, J., Infinitely many radial and non-radial solutions for a fractional Schrödinger equation, Comput. Math. Appl., 71, 737-747 (2016) · Zbl 1359.35219
[21] Ge B., Multiple solutions of nonlinear Schrödinger equation with the fractional Laplacian, Nonlinear Anal.RWA., 2016, 30, 236-247; Ge, B., Multiple solutions of nonlinear Schrödinger equation with the fractional Laplacian, Nonlinear Anal.RWA, 30, 236-247 (2016) · Zbl 1342.35333
[22] Wang D., Guo M., Guan W., Existence of solutions for fractional Schrödinger equation with asymptotically periodic terms, J. Nonlinear Sci., 2017, 10, 625-636; Wang, D.; Guo, M.; Guan, W., Existence of solutions for fractional Schrödinger equation with asymptotically periodic terms, J. Nonlinear Sci., 10, 625-636 (2017) · Zbl 1412.35086
[23] Zhang J., Tang X., Zhang W., Infinitely many solutions of quasilinear Schrödinger equation with signchanging potential, J. Math. Anal. Appl., 2014, 420, 1762-1775; Zhang, J.; Tang, X.; Zhang, W., Infinitely many solutions of quasilinear Schrödinger equation with signchanging potential, J. Math. Anal. Appl., 420, 1762-1775 (2014) · Zbl 1298.35080
[24] Tao F., Wu X., Existence and multiplicity of positive solutions for fractional Schrödinger equations with critical growth, Nonlinear Anal. RWA., 2017, 35, 158-174; Tao, F.; Wu, X., Existence and multiplicity of positive solutions for fractional Schrödinger equations with critical growth, Nonlinear Anal. RWA, 35, 158-174 (2017) · Zbl 1372.35346
[25] Yang L., Liu Z., Multiplicity and concentration of solutions for fractional Schrödinger equation with sublinear perturbation and steep potential well, Comput. Math. Appl., 2016, 72, 1629-1640; Yang, L.; Liu, Z., Multiplicity and concentration of solutions for fractional Schrödinger equation with sublinear perturbation and steep potential well, Comput. Math. Appl., 72, 1629-1640 (2016) · Zbl 1365.35221
[26] Servadei R., Valdinoci E., Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl, 2012, 389, 887-898; Servadei, R.; Valdinoci, E., Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl, 389, 887-898 (2012) · Zbl 1234.35291
[27] Yang L., Multiplicity of solutions for fractional Schrödinger equations with perturbation, Boundary Value Problems, 2015, 56,; Yang, L., Multiplicity of solutions for fractional Schrödinger equations with perturbation, Boundary Value Problems, 56 (2015) · Zbl 1310.35241 · doi:10.1186/s13661-015-0317-5
[28] Rabinowitz P. H., Minimax methods in critical point theory with applications to differential equations, in: CBMS Reg. Conf. Ser. in Math., Vol. 65, Amer.Math. Soc., Providence, RI, 1986; Rabinowitz, P. H., CBMS Reg. Conf. Ser. in Math.. Amer.Math. Soc., 65 (1986)
[29] Hajaiej H., Yu X., Zhai Z., Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms, J Math. Anal. Appl., 2012, 396, 569-577; Hajaiej, H.; Yu, X.; Zhai, Z., Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms, J Math. Anal. Appl., 396, 569-577 (2012) · Zbl 1254.26010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.