×

X states of the same spectrum and entanglement as all two-qubit states. (English) Zbl 1402.81048

Summary: We present an explicit family of two-qubit X states with entanglement-preserving unitary equivalence to the set of general states; that is, for any spectrum-entanglement combination achievable by general states, this family contains an X state of the same spectrum and entanglement.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81V80 Quantum optics
11Y05 Factorization
47A68 Factorization theory (including Wiener-Hopf and spectral factorizations) of linear operators
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Schrödinger, E., Die gegenwärtige situation in der quantenmechanik. [The present status of quantum mechanics]., Naturwiss., 23, 807, (1935) · JFM 61.0936.01 · doi:10.1007/BF01491891
[2] Einstein, A.; Podolsky, B.; Rosen, N., Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev., 47, 777, (1935) · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[3] Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, p. 175 (1984) · Zbl 1306.81030
[4] Bennett, CH, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett., 68, 3121, (1992) · Zbl 0969.94501 · doi:10.1103/PhysRevLett.68.3121
[5] Ekert, AK, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett., 67, 661, (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[6] Bennett, CH; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, WK, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70, 1895, (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[7] Bouwmeester, D.; Pan, JW; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A., Experimental quantum teleportation, Nature, 390, 575, (1997) · Zbl 1369.81006 · doi:10.1038/37539
[8] Bouwmeester, D.; Pan, JW; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A., Experimental quantum teleportation, Philos. Trans. R. Soc. Lond. A, 356, 1733, (1998) · doi:10.1098/rsta.1998.0245
[9] Feynman, RP, Quantum mechanical computers, Found. Phys., 16, 507, (1986) · doi:10.1007/BF01886518
[10] DiVincenzo, D.P.: The physical implementation of quantum computation. arXiv preprint (2000). arXiv:quant-ph/0002077
[11] Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Fundamentals of Computer Science, p. 124 (1994) · Zbl 1005.11506
[12] Shor, PW, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Sci. Stat. Comput., 26, 1484, (1997) · Zbl 1005.11065 · doi:10.1137/S0097539795293172
[13] Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, p. 212 (1996) · Zbl 0922.68044
[14] Deutsch, D., Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. R. Soc. Lond. A, 400, 97, (1985) · Zbl 0900.81019 · doi:10.1098/rspa.1985.0070
[15] Deutsch, D.; Jozsa, R., Rapid solution of problems by quantum computation, Proc. R. Soc. Lond. A, 439, 553, (1992) · Zbl 0792.68058 · doi:10.1098/rspa.1992.0167
[16] Cleve, R.; Ekert, A.; Macchiavello, C.; Mosca, M., Quantum algorithms revisited, Proc. R. Soc. Lond. A, 454, 339, (1998) · Zbl 0915.68050 · doi:10.1098/rspa.1998.0164
[17] Yu, T.; Eberly, JH, Finite-time disentanglement via spontaneous emission, Phys. Rev. Lett., 93, 140404, (2004) · doi:10.1103/PhysRevLett.93.140404
[18] Al-Qasimi, A.; James, DFV, Sudden death of entanglement at finite temperature, Phys. Rev. A, 77, 012117, (2008) · doi:10.1103/PhysRevA.77.012117
[19] Weinstein, YS, Entanglement dynamics in three qubit X-states, Phys. Rev. A, 82, 032326, (2010) · doi:10.1103/PhysRevA.82.032326
[20] Peters, NA; Altepeter, JB; Branning, D.; Jeffrey, ER; Wei, TC; Kwiat., PG, Maximally entangled mixed states: creation and concentration, Phys. Rev. Lett., 92, 133601, (2004) · doi:10.1103/PhysRevLett.92.133601
[21] Yu, T.; Eberly, JH, Evolution from entanglement to decoherence of bipartite mixed X states, Quant. Inf. Comp., 7, 459, (2007) · Zbl 1152.81830
[22] Dirac, PAM, The quantum theory of the emission and absorption of radiation, Proc. R. Soc. A, 114, 243, (1927) · JFM 53.0847.01 · doi:10.1098/rspa.1927.0039
[23] Hedemann, S.R.: Evidence that all states are unitarily equivalent to X states of the same entanglement. arXiv preprint (2013). arXiv:1310.7038
[24] Mendonça, PEMF; Marchiolli, MA; Galetti., D., Entanglement universality of two-qubit X-states, Ann. Phys., 351, 79, (2014) · Zbl 1360.81071 · doi:10.1016/j.aop.2014.08.017
[25] Hill, S.; Wootters, WK, Entanglement of a pair of quantum bits, Phys. Rev. Lett., 78, 5022, (1997) · doi:10.1103/PhysRevLett.78.5022
[26] Wootters, WK, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett., 80, 2245, (1998) · Zbl 1368.81047 · doi:10.1103/PhysRevLett.80.2245
[27] Wang, J.; Batelaan, H.; Podany, J.; Starace, AF, Entanglement evolution in the presence of decoherence, J. Phys. B, 39, 4343, (2006) · doi:10.1088/0953-4075/39/21/001
[28] Ishizaka, S.; Hiroshima, T., Maximally entangled mixed states in two qubits, Phys. Rev. A, 62, 022310, (2000) · doi:10.1103/PhysRevA.62.022310
[29] Ziman, M.; Bužek, V., Concurrence versus purity: influence of local channels on Bell states of two qubits, Phys. Rev. A, 72, 052325, (2005) · doi:10.1103/PhysRevA.72.052325
[30] Horst, B.; Bartkiewicz, K.; Miranowicz, A., Two-qubit mixed states more entangled than pure states: comparison of the relative entropy of entanglement for a given nonlocality, Phys. Rev. A, 87, 042108, (2013) · doi:10.1103/PhysRevA.87.042108
[31] Verstraete, F.; Audenaert, K.; Moor, BD, Maximally entangled mixed states of two qubits, Phys. Rev. A, 64, 012316, (2001) · doi:10.1103/PhysRevA.64.012316
[32] Wei, TC; Nemoto, K.; Goldbart, PM; Kwiat, PG; Munro, WJ; Verstraete, F., Maximal entanglement versus entropy for mixed quantum states, Phys. Rev. A, 67, 022110, (2003) · doi:10.1103/PhysRevA.67.022110
[33] Hedemann, S.R.: Ent: a multipartite entanglement measure, and parameterization of entangled states. Quant. Inf. Comp. 18, 389 (2018). arXiv:1611.03882
[34] Życzkowski, K.; Horodecki, P.; Sanpera, A.; Lewenstein., M., On the volume of the set of mixed entangled states, Phys. Rev. A, 58, 883, (1998) · doi:10.1103/PhysRevA.58.883
[35] Mendonça, PEMF; Marchiolli, MA; Hedemann, SR, Maximally entangled mixed states for qubit-qutrit systems, Phys. Rev. A, 95, 022324, (2016) · doi:10.1103/PhysRevA.95.022324
[36] Hedemann, S.R.: Hyperspherical parameterization of unitary matrices. arXiv preprint (2013). arXiv:1303.5904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.