×

A new shock-capturing technique based on moving least squares for higher-order numerical schemes on unstructured grids. (English) Zbl 1231.76218

Summary: This paper presents a shock detection technique based on Moving Least Squares reproducing kernel approximations. The multiresolution properties of these kinds of approximations allow us to define a wavelet function to act as a smoothness indicator. This MLS sensor is used to detect the shock waves. When the MLS sensor is used in a finite volume framework in combination with slope limiters, it improves the results obtained with the single application of a slope-limiter algorithm. The slope-limiter algorithm is activated only at points where the MLS sensor detects a shock. This procedure results in a decrease of the artificial dissipation introduced by the whole numerical scheme. Thus, this new MLS sensor extends the application of slope limiters to higher-order methods. Moreover, as Moving Least Squares approximations can handle scattered data accurately, the use of the proposed methodology on unstructured grids is straightforward. The results are very promising, and comparable to those of essentially non-oscillatory (ENO) and weighted ENO (WENO) schemes. Another advantage of the proposed methodology is its multidimensional character, that results in a very accurate detection of the shock position in multidimensional flows.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76L05 Shock waves and blast waves in fluid mechanics

Software:

HE-E1GODF
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, Journal of Computational Physics, 114, 45-58 (1994) · Zbl 0822.65062
[2] Adams, N. A.; Shariff, K., A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems, Journal of Computational Physics, 127, 27-51 (1996) · Zbl 0859.76041
[3] AGARD AR-211, Test Cases for Inviscid Flow Fields (1985), AGARD
[4] Barth, T. J.; Jespersen, D. C., The design and application of upwind schemes on unstructured meshes, (AIAA-89-0366 (1989))
[5] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, Journal of Computational Physics, 138, 251-285 (1997) · Zbl 0902.76056
[6] Bogey, C.; de Cacqueray, N.; Bailly, C., A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations, Journal of Computational Physics, 228, 1447-1465 (2009) · Zbl 1263.76046
[7] Borges, R.; Carmona, M.; Costa, B.; Don, W. S., An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, Journal of Computational Physics, 227, 6, 3101-3211 (2008) · Zbl 1136.65076
[8] Capdeville, G., A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes, Journal of Computational Physics, 227, 2977-3014 (2008) · Zbl 1135.65359
[9] Cockburn, B.; Shu, C. W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional system, Journal of Computational Physics, 141, 199-224 (1998) · Zbl 0920.65059
[10] Colella, P.; Woodward, P. R., The Piecewise Parabolic Method (PPM) for gas-dynamical simulations, Journal of Computational Physics, 54, 174-201 (1984) · Zbl 0531.76082
[11] Colella, P.; Sekora, M. D., A limiter for PPM that preserves accuracy at smooth extrema, Journal of Computational Physics, 227, 7069-7076 (2008) · Zbl 1152.65090
[12] Cueto-Felgueroso, L.; Colominas, I.; Nogueira, X.; Navarrina, F.; Casteleiro, M., Finite volume solvers and Moving Least-Squares approximations for the compressible Navier-Stokes equations on unstructured grids, Computer Methods in Applied Mechanics and Engineering, 196, 4712-4736 (2007) · Zbl 1173.76358
[13] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, Journal of Computational Physics, 221, 693-723 (2007) · Zbl 1110.65077
[14] Dumbser, M.; Käser, M.; Titarev, V. A.; Toro, E. F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, Journal of Computational Physics, 226, 204-243 (2007) · Zbl 1124.65074
[15] Dumbser, M.; Balsara, D. W.; Toro, E. F.; Munz, C. D., A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, Journal of Computational Physics, 227, 8209-8253 (2008) · Zbl 1147.65075
[16] Garnier, E.; Sagaut, P.; Deville, M., A class of explicit ENO filters with application to unsteady flows, Journal of Computational Physics, 170, 184-204 (2001) · Zbl 1011.76056
[17] Goodman, J. B.; LeVeque, R. J., On the accuracy of stable schemes for 2D scalar conservation laws, Mathematics of Computation, 45, 15-21 (1985) · Zbl 0592.65058
[18] Grasso, F.; Pirozzoli, S., Shock-wave-vortex interactions: shock and vortex deformations, and sound production, Theoretical and Computational Fluid Dynamics, 13, 421-456 (2000) · Zbl 0972.76051
[19] Harten, A., High resolution schemes for hyperbolic conservation laws, Journal of Computational Physics, 49, 357-393 (1983) · Zbl 0565.65050
[20] Harten, A.; Osher, S., Uniformly high order accurate non-oscillatory schemes I, SIAM Journal on Numerical Analysis, 24, 279-309 (1987) · Zbl 0627.65102
[21] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order essentially non-oscillatory schemes III, Journal of Computational Physics, 71, 231-303 (1987) · Zbl 0652.65067
[22] Harten, A., The artificial compression method for computation of shocks and contact discontinuities. III. Self adjusting hybrid schemes, Mathematics of Computation, 32, 363-389 (1978) · Zbl 0409.76057
[23] Inoue, O. M.; Hattori, Y., Sound generation by shock-vortex interactions, Journal of Fluid Mechanics, 380, 81-116 (1999) · Zbl 0953.76080
[24] Hauke, G.; Hughes, T. J.R., A unified approach to compressible and incompressible flows, Computer Methods in Applied Mechanics and Engineering, 113, 3-4, 389-395 (1994) · Zbl 0845.76040
[26] Henrick, A. K.; Aslam, T. D.; Powers, J. M., Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points, Journal of Computational Physics, 207, 542-567 (2005) · Zbl 1072.65114
[27] Hu, C. Q.; Shu, C. W., Weighted essentially non-oscillatory schemes on triangular meshes, Journal of Computational Physics, 150, 97-127 (1999) · Zbl 0926.65090
[28] Hughes, T. J.R.; Tezduyar, T. E., Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Computer Methods in Applied Mechanics and Engineering, 45, 1-3, 217-284 (1984) · Zbl 0542.76093
[29] Jameson, A., Analysis and design of numerical schemes for gas dynamics 1 artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence, International Journal of Computational Fluid Dynamics, 4, 171-218 (1995)
[30] Jameson, A.; Schmidt, W.; Turkel, E., Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes, (AIAA-81-1259 (1981))
[31] Jawahar, P.; Kamath, P., A high resolution procedure for Euler and Navier-Stokes computations on unstructured grids, Journal of Computational Physics, 164, 165-203 (2000) · Zbl 0992.76063
[32] Krivodonova, L., Limiters for high-order discontinuous Galerkin methods, Journal of Computational Physics, 226, 879-896 (2007) · Zbl 1125.65091
[33] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Mathematics of Computation, 37, 155, 141-158 (1981) · Zbl 0469.41005
[34] Leveque, R. J., Numerical Methods for Conservation Laws (1990), Birkhauser Verlag: Birkhauser Verlag Basel · Zbl 0682.76053
[35] Liu, W. K.; Hao, W.; Chen, Y.; Jun, S.; Gosz, J., Multiresolution reproducing kernel particle methods, Computational Mechanics, 20, 295-309 (1997) · Zbl 0893.73078
[36] Luo, H.; Baum, J. D.; Löhner, R., A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids, Journal of Computational Physics, 227, 8875-8893 (2008) · Zbl 1391.76350
[37] Moretti, G.; Abbett, M., A time-dependent computational method for blunt body flows, AIAA Journal, 4, 12, 2136-2141 (1966) · Zbl 0145.46402
[38] Moretti, G., Computation of flows with shocks, Annual Review of Fluid Mechanics, 19, 313-337 (1987)
[39] Nogueira, X.; Cueto-Felgueroso, L.; Colominas, I.; Gómez, H.; Navarrina, F.; Casteleiro, M., On the accuracy of finite volume and discontinuous Galerkin discretizations for compressible flow on unstructured grids, International Journal for Numerical Methods in Engineering, 78, 1553-1584 (2009) · Zbl 1171.76426
[42] Ollivier-Gooch, C. F., Quasi-ENO schemes for unstructured meshes based on unlimited data-dependent least-squares reconstruction, Journal of Computational Physics, 133, 6-17 (1997) · Zbl 0899.76282
[43] Paciorri, R.; Bonfiglioli, A., A shock-fitting technique for 2D unstructured grids, Computers & Fluids, 38, 715-726 (2009) · Zbl 1169.76415
[44] Persson, P. O.; Peraire, J., Sub-cell shock capturing for discontinuous Galerkin methods, (AIAA-2006-112 (January, 2006)) · Zbl 1167.65436
[45] Pirozzoli, S., Conservative hybrid compact-WENO schemes for shock-turbulence interaction, Journal of Computational Physics, 178, 81-117 (2002) · Zbl 1045.76029
[46] Qiu, J.; Shu, C. W., Hermite WENO schemes and their application as limiters for Runge-Kutta Discontinuous Galerkin method: one-dimensional case, Journal of Computational Physics, 193, 115-135 (2003) · Zbl 1039.65068
[47] Qiu, J.; Shu, C. W., Runge-Kutta Discontinuous Galerkin method using WENO limiters, SIAM Journal of Scientific Computing, 26, 907-929 (2005) · Zbl 1077.65109
[48] Qiu, J.; Shu, C. W., A Comparison of trouble cell indicators for Runge-Kutta Discontinuous Galerkin methods using WENO limiters, SIAM Journal on Scientific Computing, 27, 995-1013 (2005) · Zbl 1092.65084
[49] Rault, A.; Chiavassa, G.; Donat, R., Shock-vortex interactions at high Mach numbers, Journal of Scientific Computing, 19, 1-3, 347-371 (2003) · Zbl 1039.76047
[50] Richtmyer, R.; Morton, K., Difference Methods for Initial Value Problems (1967), Interscience: Interscience New York · Zbl 0155.47502
[51] Roe, P. L., Some contributions to the modeling of discontinuous flows, Annual Review of Fluid Mechanics, 18, 337-365 (1986)
[52] Shakib, F.; Hughes, T. J.R.; Johan, Z., A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 89, 1-3, 141-219 (1991) · Zbl 0838.76040
[53] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics, 77, 439-471 (1988) · Zbl 0653.65072
[54] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes II, Journal of Computational Physics, 83, 32-78 (1989) · Zbl 0674.65061
[55] Shu, C. W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, (ICASE Report 97-65 (1997)) · Zbl 0927.65111
[56] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes II, Journal of Computational Physics, 83, 32-78 (1989) · Zbl 0674.65061
[57] Sjögreen, B.; Yee, H. C., Multiresolution wavelet based adaptive numerical dissipation control for high order methods, Journal of Scientific Computing, 20, 211-255 (2004) · Zbl 1106.76411
[58] Smart, M. K.; Kalkhoran, I. M.; Popovic, S., Some aspects of streamwise vortex behavior during oblique shock wave/vortex interaction, Shock Waves, 8, 243-255 (1998)
[59] Sod, G. A., Numerical Methods in Fluid Dynamics (1985), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0592.76001
[60] Sonar, T., On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: polynomial recovery, accuracy and stencil selection, Computer Methods in Applied Mechanics and Engineering, 140, 157-181 (1997) · Zbl 0898.76086
[61] Sweby, P. K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM Journal on Numerical Analysis, 21, 995-1011 (1984) · Zbl 0565.65048
[62] Tezduyar, T. E.; Senga, M., Stabilization and shock-capturing parameters in SUPG formulation of compressible flows, Computer Methods in Applied Mechanics and Engineering, 195, 1621-1632 (2006) · Zbl 1122.76061
[63] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction (1999), Springer Verlag: Springer Verlag Berlin · Zbl 0923.76004
[64] Van Albada, G. D.; Van Leer, B.; Roberts, W. W., A comparative study of computational methods in cosmic gas dynamics, Astronomy and Astrophysics, 108, 76-84 (1982) · Zbl 0492.76117
[65] Van Leer, B., Towards the ultimate conservative difference scheme I. The quest of monotonicity, Springer Lecture Notes in Physics, 18, 163-168 (1973) · Zbl 0255.76064
[66] Venkatakrishnan, V., Convergence to steady state solutions of the Euler equations on unstructured grids with limiters, Journal of Computational Physics, 118, 120-130 (1995) · Zbl 0858.76058
[67] Visbal, M. R.; Gaitonde, D. V., Shock capturing using compact-differencing-based methods, (AIAA-2005-1265 (2005))
[68] Wagner, G. J.; Liu, W. K., Turbulence simulation and multiple scale subgrid models, Computational Mechanics, 25, 117-136 (2000) · Zbl 0972.76050
[69] Witteveen, J. A.S.; Koren, B.; Bakker, P. G., An improved front tracking method for the Euler equations, Journal of Computational Physics, 224, 712-728 (2007) · Zbl 1123.76055
[70] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of Computational Physics, 54, 115-173 (1984) · Zbl 0573.76057
[71] Yee, H. C.; Sandham, N. D.; Djomehri, M. J., Low-dissipative high-order shock-capturing methods using characteristic-based filters, Journal of Computational Physics, 150, 199-238 (1999) · Zbl 0936.76060
[72] Yoon, S. H.; Kim, C.; Kim, K. H., Multi-dimensional limiting process for three-dimensional flow physics analysis, Journal of Computational Physics, 227, 6001-6043 (2008) · Zbl 1388.76218
[73] Zhang, Y. T.; Shu, C. W., Third order WENO scheme on three dimensional tetrahedral meshes, Communications in Computational Physics, 5, 836-848 (2009) · Zbl 1364.65177
[74] Zhu, J.; Qiu, J.; Shu, C. W.; Dumbser, M., Runge-Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes, Journal of Computational Physics, 227, 4330-4353 (2008) · Zbl 1157.65453
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.