×

An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids. (English) Zbl 1349.76456

Summary: We present a novel method for discretizing the incompressible Navier-Stokes equations on a multitude of moving and overlapping Cartesian grids each with an independently chosen cell size to address adaptivity. Advection is handled with first and second order accurate semi-Lagrangian schemes in order to alleviate any time step restriction associated with small grid cell sizes. Likewise, an implicit temporal discretization is used for the parabolic terms including Navier-Stokes viscosity which we address separately through the development of a method for solving the heat diffusion equations. The most intricate aspect of any such discretization is the method used in order to solve the elliptic equation for the Navier-Stokes pressure or that resulting from the temporal discretization of parabolic terms. We address this by first removing any degrees of freedom which duplicately cover spatial regions due to overlapping grids, and then providing a discretization for the remaining degrees of freedom adjacent to these regions. We observe that a robust second order accurate symmetric positive definite readily preconditioned discretization can be obtained by constructing a local Voronoi region on the fly for each degree of freedom in question in order to obtain both its stencil (logically connected neighbors) and stencil weights. Internal curved boundaries such as at solid interfaces are handled using a simple immersed boundary approach which is directly applied to the Voronoi mesh in both the viscosity and pressure solves. We independently demonstrate each aspect of our approach on test problems in order to show efficacy and convergence before finally addressing a number of common test cases for incompressible flow with stationary and moving solid bodies.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adalsteinsson, D.; Sethian, J., The fast construction of extension velocities in level set methods, J. Comput. Phys., 148, 2-22 (1999) · Zbl 0919.65074
[2] Aftosmis, M. J.; Berger, M. J.; Murman, S. M., Applications of space-filling curves to Cartesian methods for CFD (2004), AIAA Paper 1232:2003-1237
[3] Almgren, A.; Bell, J.; Colella, P.; Howell, L.; Welcome, M., A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations, J. Comput. Phys., 142, 1-46 (1998) · Zbl 0933.76055
[4] Batty, C.; Xenos, S.; Houston, B., Tetrahedral embedded boundary methods for accurate and flexible adaptive fluids, (Proceedings of Eurographics (2010))
[5] Benek, J. A.; Buning, P. G.; Steger, J. L., A 3-d Chimera grid embedding technique, (7th Computational Fluid Dynamics Conference, AIAA (1985)), 322-331
[6] Benek, J. A.; Donegan, T. L.; Suhs, N. E., Extended chimera grid embedding scheme with applications to viscous flows, (8th Computational Fluid Dynamics Conference (1987), AIAA), 283-391
[7] Benek, J. A.; Steger, J. L.; Dougherty, F. C., A flexible grid embedding technique with applications to the Euler equations, (6th Computational Fluid Dynamics Conference (1983), AIAA), 373-382
[8] Berger, M.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 64-84 (1989) · Zbl 0665.76070
[9] Berger, M.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484-512 (1984) · Zbl 0536.65071
[10] Brackbill, J. U.; Kothe, D. B.; Ruppel, H. M., Flip: A low-dissipation, particle-in-cell method for fluid flow, Comput. Phys. Comm., 48, 25-38 (1988)
[11] Brackbill, J. U.; Ruppel, H. M., Flip: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions, J. Comput. Phys., 65, 314-343 (1986) · Zbl 0592.76090
[12] Brochu, T.; Batty, C.; Bridson, R., Matching fluid simulation elements to surface geometry and topology, SIGGRAPH Proc.. SIGGRAPH Proc., ACM Trans. Graph., 47, 1-9 (2010)
[13] Burton, T. M.; Eaton, J. K., Analysis of a fractional-step method on overset grids, J. Comput. Phys., 177, 2, 336-364 (2002) · Zbl 1017.76051
[14] Carré, G.; Pino, S. D.; Després, B.; Labourasse, E., A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J. Comput. Phys., 228, 14, 5160-5183 (2009) · Zbl 1168.76029
[15] Carrica, P. M.; Wilson, R. V.; Noack, R. W.; Stern, F., Ship motions using single-phase level set with dynamic overset grids, Comput. Fluids, 36, 9, 1415-1433 (2007) · Zbl 1194.76197
[16] Chang, L.; Yuan, G., An efficient and accurate reconstruction algorithm for the formulation of cell-centered diffusion schemes, J. Comput. Phys., 231, 20, 6935-6952 (2012)
[17] Chen, H.; Min, C.; Gibou, F., A supra-convergent finite difference scheme for the Poisson and heat equations on irregular domains and non-graded adaptive Cartesian grids, J. Sci. Comput., 31, 1, 19-60 (2007) · Zbl 1120.65113
[18] Chesshire, G.; Henshaw, W. D., Composite overlapping meshes for the solution of partial differential equations, J. Comput. Phys., 90, 1, 1-64 (1990) · Zbl 0709.65090
[19] Chorin, A., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2, 12-26 (1967) · Zbl 0149.44802
[20] Colin, F.; Egli, R.; Lin, F., Computing a null divergence velocity field using smoothed particle hydrodynamics, J. Comput. Phys., 217, 680-692 (2006) · Zbl 1099.76052
[21] Cornford, S. L.; Martin, D. F.; Graves, D. T.; Ranken, D. F.; Le Brocq, A. M.; Gladstone, R. M.; Payne, A. J.; Ng, E. G.; Lipscomb, W. H., Adaptive mesh, finite volume modeling of marine ice sheets, J. Comput. Phys., 232, 529-549 (2013)
[22] Cummins, S.; Rudman, M., An SPH projection method, J. Comput. Phys., 152, 2, 584-607 (1999) · Zbl 0954.76074
[23] Dukowicz, J. K.; Cline, M. C.; Addessio, F. L., A general topology Godunov method, J. Comput. Phys., 82, 1, 29-63 (1989) · Zbl 0665.76032
[24] Enright, D.; Marschner, S.; Fedkiw, R., Animation and rendering of complex water surfaces, SIGGRAPH Proc.. SIGGRAPH Proc., ACM Trans. Graph., 21, 3, 736-744 (2002)
[25] Ge, L.; Sotiropoulos, F., A numerical method for solving the 3d unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries, J. Comput. Phys., 225, 2, 1782-1809 (2007) · Zbl 1213.76134
[26] Ghia, U.; Ghia, K.; Shin, C., High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
[27] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics—theory and application to nonspherical stars, Mon. Not. R. Astron. Soc., 181, 375 (1977) · Zbl 0421.76032
[28] Grétarsson, J.; Fedkiw, R., Fully conservative, robust treatment of thin shell fluid-structure interactions in compressible flows, J. Comput. Phys., 245, 160-204 (2013) · Zbl 1349.74111
[29] Harlow, F.; Welch, J., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8, 2182-2189 (1965) · Zbl 1180.76043
[30] Harlow, F. H., The particle-in-cell computing method for fluid dynamics, Methods Comput. Phys., 3, 319 (1963)
[31] Henshaw, W. D., A fourth-order accurate method for the incompressible Navier-Stokes equations on overlapping grids, J. Comput. Phys., 113, 1, 13-25 (1994) · Zbl 0808.76059
[32] Henshaw, W. D.; Kreiss, H.-O.; Reyna, L. G.M., A fourth-order-accurate difference approximation for the incompressible Navier-Stokes equations, Comput. Fluids, 23, 4, 575-593 (1994) · Zbl 0801.76055
[33] Henshaw, William D., On multigrid for overlapping grids, SIAM J. Sci. Comput., 26, 5, 1547-1572 (2005) · Zbl 1076.65113
[34] Henshaw, William D.; Chesshire, G. S., Multigrid on composite meshes, SIAM J. Sci. Statist. Comput., 8, 6, 914-923 (1987) · Zbl 0655.65117
[35] Henshaw, William D.; Schwendeman, Donald W., An adaptive numerical scheme for high-speed reactive flow on overlapping grids, J. Comput. Phys., 191, 420-447 (2003) · Zbl 1134.76427
[36] Henshaw, William D.; Schwendeman, Donald W., Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow, J. Comput. Phys., 216, 2, 744-779 (2006) · Zbl 1220.76052
[37] Henshaw, William D.; Schwendeman, Donald W., Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement, J. Comput. Phys., 227, 16, 7469-7502 (2008) · Zbl 1213.76138
[38] Hinatsu, M.; Ferziger, J. H., Numerical computation of unsteady incompressible flow in complex geometry using a composite multigrid technique, Internat. J. Numer. Methods Fluids, 13, 8, 971-997 (1991) · Zbl 0741.76044
[39] Hirt, C.; Amsden, A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 135, 227-253 (1974) · Zbl 0292.76018
[40] Jespersen, D. C.; Pulliam, T. H.; Buning, P. G., Recent enhancements to OVERFLOW (1997), AIAA, paper 97-0644
[41] Ji, C.; Munjiza, A.; Williams, J. J.R., A novel iterative direct-forcing immersed boundary method and its finite volume applications, J. Comput. Phys., 231, 4, 1797-1821 (2012) · Zbl 1408.76404
[42] Kadioglu, S. Y.; Sussman, M., Adaptive solution techniques for simulating underwater explosions and implosions, J. Comput. Phys., 227, 2083-2104 (2008) · Zbl 1290.76099
[43] Kallinderis, Y.; Ahn, H. T., Incompressible Navier-Stokes method with general hybrid meshes, J. Comput. Phys., 210, 1, 75-108 (2005) · Zbl 1154.76365
[44] Khosla, P. K.; Rubin, S. G., A diagonally dominant second-order accurate implicit scheme, Comput. Fluids, 2, 2, 207-209 (1974) · Zbl 0335.76009
[45] Koobus, B.; Farhat, C., On the implicit time integration of semi-discrete viscous fluxes on unstructured dynamic meshes, Internat. J. Numer. Methods Fluids, 29, 8, 975-996 (1999) · Zbl 0938.76065
[46] Koobus, B.; Farhat, C., Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes, Comput. Methods Appl. Mech. Engrg., 170, 1, 103-129 (1999) · Zbl 0943.76055
[47] Koshizuka, S.; Tamako, H.; Oka, Y., A particle method for incompressible viscous flows with fluid fragmentation, Comput. Fluid Dyn. J. (1995)
[48] Kucharik, M.; Shashkov, M.; Wendroff, B., An efficient linearity-and-bound-preserving remapping method, J. Comput. Phys., 188, 2, 462-471 (2003) · Zbl 1022.65009
[49] Lee, Jinmo; You, Donghyun, An implicit ghost-cell immersed boundary method for simulations of moving body problems with control of spurious force oscillations, J. Comput. Phys., 233, 0, 295-314 (2013)
[50] Lee, Jongho; Kim, Jungwoo; Choi, Haecheon; Yang, Kyung-Soo, Sources of spurious force oscillations from an immersed boundary method for moving-body problems, J. Comput. Phys., 230, 7, 2677-2695 (2011) · Zbl 1316.76075
[51] Lentine, M.; Grétarsson, J. T.; Fedkiw, R., An unconditionally stable fully conservative semi-Lagrangian method, J. Comput. Phys., 230, 2857-2879 (2011) · Zbl 1316.76076
[52] Linde, T.; Roe, P. L., An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries, (9th Computational Fluid Dynamics Conference (1989), AIAA), 1-7
[53] Losasso, F.; Fedkiw, R.; Osher, S., Spatially adaptive techniques for level set methods and incompressible flow, Comput. Fluids, 35, 995-1010 (2006) · Zbl 1177.76295
[54] Losasso, F.; Gibou, F.; Fedkiw, R., Simulating water and smoke with an octree data structure, SIGGRAPH Proc.. SIGGRAPH Proc., ACM Trans. Graph., 23, 457-462 (2004)
[55] Losasso, F.; Talton, J.; Kwatra, N.; Fedkiw, R., Two-way coupled sph and particle level set fluid simulation, IEEE Trans. Vis. Comput. Graph., 14, 4, 797-804 (2008)
[56] Loubčre, R.; Shashkov, M. J., A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods, J. Comput. Phys., 209, 1, 105-138 (2005) · Zbl 1329.76236
[57] Loubčre, R.; Staley, M.; Wendroff, B., The repair paradigm: New algorithms and applications to compressible flow, J. Comput. Phys., 211, 2, 385-404 (2006) · Zbl 1138.76406
[58] Lucy, L., A numerical approach to the testing of the fission hypothesis, Astron. J., 82, 1013-1024 (1977)
[59] Maire, P.-H.; Nkonga, B., Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics, J. Comput. Phys., 228, 3, 799-821 (2009) · Zbl 1156.76039
[60] Margolin, L. G.; Shashkov, M., Remapping, recovery and repair on a staggered grid, Comput. Methods Appl. Mech. Engrg., 193, 39-41, 4139-4155 (2004) · Zbl 1068.76058
[61] Margolin, L. G.; Shashkov, Mikhail, Second-order sign-preserving conservative interpolation (remapping) on general grids, J. Comput. Phys., 184, 1, 266-298 (2003) · Zbl 1016.65004
[62] Martin, D. F.; Colella, P.; Graves, D., A cell-centered adaptive projection method for the incompressible Navier-Stokes equations in three dimensions, J. Comput. Phys., 227, 3, 1863-1886 (2008) · Zbl 1137.76040
[63] Mavriplis, D. J.; Yang, Z., Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes, J. Comput. Phys., 213, 2, 557-573 (2006) · Zbl 1136.76402
[64] Min, C.; Gibou, F., A second order accurate projection method for the incompressible Navier-Stokes equation on non-graded adaptive grids, J. Comput. Phys., 219, 912-929 (2006) · Zbl 1330.76096
[65] Norris, S. E.; Were, C. J.; Richards, P. J.; Mallinson, G. D., A Voronoi-based ALE solver for the calculation of incompressible flow on deforming unstructured meshes, Internat. J. Numer. Methods Fluids, 65, 10, 1160-1179 (2011) · Zbl 1429.76083
[66] Pau, G. S.H.; Bell, J. B.; Almgren, A. S.; Fagnan, K. M.; Lijewski, M. J., An adaptive mesh refinement algorithm for compressible two-phase flow in porous media, Comput. Geosci., 16, 577-592 (2012)
[67] Perot, J. B.; Subramanian, V., Discrete calculus methods for diffusion, J. Comput. Phys., 224, 1, 59-81 (May 2007) · Zbl 1120.65325
[68] Popinet, S., Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys., 190, 572-600 (2003) · Zbl 1076.76002
[69] Rai, M. M., A conservative treatment of zonal boundaries for Euler equation calculations, J. Comput. Phys., 62, 2, 472-503 (1986) · Zbl 0619.65085
[70] Rai, M. M., A relaxation approach to patched-grid calculations with the Euler equations, J. Comput. Phys., 66, 1, 99-131 (1986) · Zbl 0606.76080
[71] Rasmussen, N.; Enright, D.; Nguyen, D.; Marino, S.; Sumner, N.; Geiger, W.; Hoon, S.; Fedkiw, R., Directable photorealistic liquids, (Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim. (2004)), 193-202
[72] Robinson-Mosher, A.; Schroeder, C.; Fedkiw, R., A symmetric positive definite formulation for monolithic fluid structure interaction, J. Comput. Phys., 230, 1547-1566 (2011) · Zbl 1390.74054
[73] Robinson-Mosher, A.; Shinar, T.; Grétarsson, J. T.; Su, J.; Fedkiw, R., Two-way coupling of fluids to rigid and deformable solids and shells, ACM Trans. Graph., 46, 1-9 (2008)
[74] Roma, A. M.; Peskin, C. S.; Berger, M. J., An adaptive version of the immersed boundary method, J. Comput. Phys., 153, 2, 509-534 (1999) · Zbl 0953.76069
[75] Schroeder, C.; Zheng, W.; Fedkiw, R., Implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid, J. Comput. Phys., 231, 2092-2115 (2012) · Zbl 1382.76197
[76] Selle, A.; Fedkiw, R.; Kim, B.; Liu, Y.; Rossignac, J., An unconditionally stable MacCormack method, J. Sci. Comput., 35, 2, 350-371 (2008) · Zbl 1203.65148
[77] Seo, Jung Hee; Mittal, Rajat, A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations, J. Comput. Phys., 230, 19, 7347-7363 (2011) · Zbl 1408.76162
[78] Sin, F.; Bargteil, A. W.; Hodgins, J. K., A point-based method for animating incompressible flow, (Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., SCA ʼ09 (2009), ACM: ACM New York, NY, USA), 247-255
[79] Steger, J. L.; Benek, J. A., On the use of composite grid schemes in computational aerodynamics, Comput. Methods Appl. Mech. Engrg., 64, 1-3, 301-320 (1987) · Zbl 0607.76061
[80] Steger, J. L.; Dougherty, F. C.; Benek, J. A., A Chimera grid scheme, (Advances in Grid Generation, vol. 5 (1985), ASME: ASME New York)
[81] Sussman, M.; Almgren, A.; Bell, J.; Colella, P.; Howell, L.; Welcome, M., An adaptive level set approach for incompressible two-phase flows, J. Comput. Phys., 148, 81-124 (1999) · Zbl 0930.76068
[82] Szewc, K.; Pozorski, J.; Minier, J.-P., Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method, Internat. J. Numer. Methods Engrg., 92, 4, 343-369 (2012) · Zbl 1352.76098
[83] Traoré, P.; Ahipo, Y. M.; Louste, C., A robust and efficient finite volume scheme for the discretization of diffusive flux on extremely skewed meshes in complex geometries, J. Comput. Phys., 228, 14, 5148-5159 (2009) · Zbl 1169.65344
[84] Trulio, J. G., Theory and structure of the afton codes (June 1966), Air Force Weapons Laboratory, Technical report
[85] Vanella, Marcos; Rabenold, Patrick; Balaras, Elias, A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid-structure interaction problems, J. Comput. Phys., 229, 18, 6427-6449 (2010) · Zbl 1425.76174
[86] Wang, Z. J., A fully conservative interface algorithm for overlapped grids, J. Comput. Phys., 122, 1, 96-106 (1995) · Zbl 0835.76081
[87] Wilson, R. V.; Carrica, P. M.; Stern, F., Simulation of ship breaking bow waves and induced vortices and scars, Internat. J. Numer. Methods Fluids, 54, 4, 419-451 (2007) · Zbl 1241.76099
[88] Yang, Jianming; Stern, Frederick, Sharp interface immersed-boundary/level-set method for wave-body interactions, J. Comput. Phys., 228, 17, 6590-6616 (2009) · Zbl 1261.76040
[89] Yang, Jianming; Stern, Frederick, A simple and efficient direct forcing immersed boundary framework for fluid-structure interactions, J. Comput. Phys., 231, 15, 5029-5061 (2012) · Zbl 1351.74025
[90] Yoon, H.; Koshizuka, S.; Oka, Y., A particle-gridless hybrid method for incompressible flows, Internat. J. Numer. Methods Fluids, 30, 407-424 (1999) · Zbl 0948.76067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.