×

Empirical likelihood confidence bands for mean functions of recurrent events with competing risks and a terminal event. (English) Zbl 1353.62107

Summary: In this paper, we consider recurrent events with competing risks in the presence of a terminal event and a censorship. We focus our attention on the mean functions which give the expected number of events of a specific type that have occurred up to a time \(t\). Using heuristics from empirical likelihood theory, we propose a method to build simultaneous (in \(t\)) confidence regions for these functions. To establish the consistency of this estimation method (as well as its bootstrap calibration), we prove a weak convergence (as stochastic processes) of the associated empirical likelihood ratio processes. Our approach almost entirely relies on empirical process methods. In the proofs, we also establish some results in empirical processes theory that may present some independent interest. Then we carry out a simulation study of our confidence bands, we compare those obtained by empirical likelihood to the ones obtained by bootstrap. Finally, our procedure is applied on a real data set of nosocomial infections in an intensive care unit of a French hospital.

MSC:

62N01 Censored data models
62G15 Nonparametric tolerance and confidence regions
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] G. Adimari, Empirical likelihood type confidence intervals under random censorship. Ann. Inst. Statist. Math.49 (1997) 447-466. · Zbl 0935.62057 · doi:10.1023/A:1003114711483
[2] P.K. Andersen, Ø. Borgan, R.D. Gill and N. Keiding, Statistical models based on counting processes. Springer Ser. Stat. Springer-Verlag, New York (1993). · Zbl 0769.62061
[3] Y. Bilias, M. Gu and Zh. Ying, Towards a general asymptotic theory for Cox model with staggered entry. Ann. Statist.25 (1997) 662-682. · Zbl 0923.62085 · doi:10.1214/aos/1031833668
[4] J. Cai and D.E. Schaubel, Analysis of recurrent event data. In Advances in survival analysis, Vol. 23 of Handbook of Statist. Elsevier, Amsterdam (2004) 603-623.
[5] J. Cai and D.E. Schaubel, Marginal means/rates models for multiple type recurrent event data. Lifetime Data Anal.10 (2004) 121-138. · Zbl 1058.62098 · doi:10.1023/B:LIDA.0000030199.23383.45
[6] B.E. Chen and R.J. Cook, Tests for multivariate recurrent events in the presence of a terminal event. Biostatistics5 (2004) 237-251. · Zbl 1096.62113
[7] B.E. Chen, R.J. Cook, J.F. Lawless and M. Zhan, Statistical methods for multivariate interval-censored recurrent events. Stat. Med.24 (2005) 671-691. · doi:10.1002/sim.1936
[8] J. Chen, L. Peng and Y. Zhao, Empirical likelihood based confidence intervals for copulas. J. Multivariate Anal.100 (2009) 137-151 · Zbl 1151.62037 · doi:10.1016/j.jmva.2008.04.005
[9] S.X. Chen and I. Van Keilegom, A review on empirical likelihood methods for regression. TEST18 (2009) 415-447. · Zbl 1203.62035 · doi:10.1007/s11749-009-0159-5
[10] S.X. Chen, L. Peng and Y. Qin, Effects of data dimension on empirical likelihood. Biometrika96 (2009) 711-722. · Zbl 1170.62023 · doi:10.1093/biomet/asp037
[11] R.J. Cook and J.F. Lawless, Marginal analysis of recurrent events and a terminating event. Stat. Med.16 (1997) 911-924. · doi:10.1002/(SICI)1097-0258(19970430)16:8<911::AID-SIM544>3.0.CO;2-I
[12] R.J. Cook and J.F. Lawless, The Statistical Analysis of Recurrent Events. Statistics for Biology and Health. Springer-Verlag (2007). · Zbl 1159.62061
[13] R.J. Cook, J.F. Lawless and C. Nadeau, Robust tests for treatment comparisons based on recurrent event responses. Biometrics52 (1996) 557-571. · Zbl 0875.62168 · doi:10.2307/2532895
[14] R.J. Cook, J.F. Lawless, L. Lakhal-Chaieb and K. Lee, Robust estimation of mean functions and treatment effects for recurrent events under event-dependent censoring and termination: application to skeletal complications in cancer metastatic to bone. J. Amer. Statist. Assoc.104 (2009) 60-75. · Zbl 1388.62281 · doi:10.1198/jasa.2009.0004
[15] J-Y. Dauxois and S. Sencey, Non-parametric tests for recurrent events under competing risks. Scand. J. Stat.36 (2009) 649-670. · Zbl 1223.62061 · doi:10.1111/j.1467-9469.2009.00642.x
[16] L. Devroye and G. Lugosi, Combinatorial methods in density estimation. Springer, New York (2001). · Zbl 0964.62025
[17] P. Du, Nonparametric modeling of the gap time in recurrent event data. Lifetime Data Anal.15 (2009) 256-277. · Zbl 1282.62215 · doi:10.1007/s10985-008-9110-4
[18] D. Ghosh, Accelerated rates regression models for recurrent failure time data. Lifetime Data Anal.10 (2004) 247-261. · Zbl 1054.62112 · doi:10.1023/B:LIDA.0000036391.87081.e3
[19] D. Ghosh and D.Y. Lin, Nonparametric analysis of recurrent events and death. Biometrics56 (2000) 554-562. · Zbl 1060.62614 · doi:10.1111/j.0006-341X.2000.00554.x
[20] D. Ghosh and D.Y. Lin, Marginal regression models for recurrent and terminal events. Statist. Sinica12 (2002) 663-688. · Zbl 1005.62084
[21] D. Ghosh and D.Y. Lin, Semiparametric analysis of recurrent events data in the presence of dependent censoring. Biometrics59 (2003) 877-885. · Zbl 1274.62671 · doi:10.1111/j.0006-341X.2003.00102.x
[22] D.J. Hand, The statistical analysis of recurrent events by Richard R. Cook, Jerald F. Lawless. Int. Stat. Rev.76 (2008) 142-143.
[23] N.L. Hjort, I.W. McKeague and I. Van Keilegom, Extending the scope of empirical likelihood. Ann. Statist.37 (2009) 1079-1111. · Zbl 1160.62029 · doi:10.1214/07-AOS555
[24] B. Jing, J. Yuan and W. Zhou, Jackknife empirical likelihood. J. Amer. Statist. Assoc.104 (2009) 1224-1232. · Zbl 1388.62136 · doi:10.1198/jasa.2009.tm08260
[25] A. Keziou and S. Leoni-Aubin, On empirical likelihood for semiparametric two-sample density ratio models. J. Statist. Plann. Inference138 (2008) 915-928. · Zbl 1130.62028 · doi:10.1016/j.jspi.2007.02.009
[26] J.F. Lawless, The analysis of recurrent events for multiple subjects. J. Roy. Statist. Soc. Ser. C44 (1995) 487-498.
[27] J.F. Lawless and C. Nadeau, Some simple robust methods for the analysis of recurrent events. Technometrics37 (1995) 158-168. · Zbl 0822.62085 · doi:10.1080/00401706.1995.10484300
[28] G. Li, R. Li and M. Zhou, Empirical likelihood in survival analysis. In Contemporary multivariate analysis and design of experiments. Vol. 2 of Ser. Biostat. World Sci. Publ., Hackensack, NJ (2005) 337-349. · Zbl 1266.62078
[29] D.Y. Lin and Z. Ying, Nonparametric tests for the gap time distributions of serial events based on censored data. Biometrics57 (2001) 369-375. · Zbl 1209.62105 · doi:10.1111/j.0006-341X.2001.00369.x
[30] D.Y. Lin, L.J. Wei and Zhiliang Ying. Accelerated failure time models for counting processes. Biometrika85 (1998) 605-618. · Zbl 0947.62069 · doi:10.1093/biomet/85.3.605
[31] D.Y. Lin, W. Sun and Z. Ying, Nonparametric estimation of the gap time distributions for serial events with censored data. Biometrika86 (1999) 59-70. · Zbl 0917.62030 · doi:10.1093/biomet/86.1.59
[32] D.Y. Lin, L.J. Wei, I. Yang and Z. Ying, Semiparametric regression for the mean and rate functions of recurrent events. J. R. Stat. Soc. Ser. B Stat. Methodol.62 (2000) 711-730. · Zbl 1074.62510 · doi:10.1111/1467-9868.00259
[33] M. Miloslavsky, S. Keleş, M.J. van der Laan and S. Butler. Recurrent events analysis in the presence of time-dependent covariates and dependent censoring. J. R. Stat. Soc. Ser. B66 (2004) 239-257. · Zbl 1062.62241 · doi:10.1111/j.1467-9868.2004.00442.x
[34] A.B. Owen, Empirical likelihood ratio confidence intervals for a single functional. Biometrika75 (1988) 237-249. · Zbl 0641.62032 · doi:10.1093/biomet/75.2.237
[35] A.B. Owen, Empirical likelihood for linear models. Ann. Statist.19 (1991) 1725-1747. · Zbl 0799.62048 · doi:10.1214/aos/1176348368
[36] A.B. Owen, Empirical likelihood ratio confidence regions. Ann. Statist.18 (1990) 90-120. · Zbl 0712.62040 · doi:10.1214/aos/1176347494
[37] A.B. Owen, Empirical Likelihood. Monographs on Statistics and Applied Probability. Taylor & Francis (2001).
[38] A. Pakes and D. Pollard, Simulation and the asymptotics of optimization estimators. Econometrica57 (1989) 1027-1057. · Zbl 0698.62031 · doi:10.2307/1913622
[39] D. Pollard, Empirical processes: theory and applications. Vol. 2 of NSF-CBMS Regional Conference Series in Probability and Statistics. Institute of Mathematical Statistics, Hayward, CA (1990). · Zbl 0741.60001
[40] J. Ren, Weighted empirical likelihood ratio confidence intervals for the mean with censored data. Ann. Inst. Statist. Math.53 (2001) 498-516. · Zbl 0985.62027 · doi:10.1023/A:1014612911961
[41] J. Ren, Smoothed weighted empirical likelihood ratio confidence intervals for quantiles. Bernoulli14 (2008) 725-748. · Zbl 1155.62033 · doi:10.3150/08-BEJ129
[42] J. Ren, Weighted empirical likelihood in some two-sample semiparametric models with various types of censored data. Ann. Statist.36 (2008) 147-166. · Zbl 1132.62083 · doi:10.1214/009053607000000695
[43] D.R. Thomas and G.L. Grunkemeier, Confidence interval estimation of survival probabilities for censored data. J. Amer. Statist. Assoc.70 (1975) 865-871. · Zbl 0331.62028 · doi:10.1080/01621459.1975.10480315
[44] A.W. Van der Vaart and J.A. Wellner, Weak convergence and empirical processes. Springer (1996). · Zbl 0862.60002
[45] D. Varron, Empirical likelihood confidence bands for functional parameters in plug-in estimation. Preprint (2014). · Zbl 1348.62167
[46] Q. Wang and B. Jing, Empirical likelihood for a class of functionals of survival distribution with censored data. Ann. Inst. Statist. Math.53 (2001) 517-527. · Zbl 1009.62092 · doi:10.1023/A:1014617112870
[47] W. Wang and M.T. Wells, Nonparametric estimation of successive duration times under dependent censoring. Biometrika85 (1998) 561-572. · Zbl 0947.62070 · doi:10.1093/biomet/85.3.561
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.