×

A simple co-rotational geometrically nonlinear membrane finite element wrinkling analysis. (English) Zbl 1271.74277

Summary: Thin pre-tensioned membranes are often used in civil architecture as well as in marine and space technologies. Lacking in-plane compression stiffness, membranes will wrinkle at certain states of stress. This paper presents a geometrically nonlinear analysis of membranes in the presence of wrinkling using a unique incremental formulation that accounts for equilibrium in the deformed state and the current wrinkling state by iterations. The membranes with wrinkling are simulated by a geometrically nonlinear upgraded version of the constant strain triangular (CST) membrane finite element. Each load step is comprised of two iteration cycles: the geometrically nonlinear cycle that ensures equilibrium in the deformed sate using the Newton-Raphson iterations and the wrinkling cycle that identifies the location and direction of the wrinkles and redistributes stresses accordingly. Finally, validation and verification of the proposed analysis is made by comparing the present results with those existing for the benchmark examples.

MSC:

74K15 Membranes
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wagner H., Zeitschrift fur Flugtechnik und MotorluftSchiffahrt 20 pp 200–
[2] DOI: 10.2514/3.8018 · Zbl 0515.73070 · doi:10.2514/3.8018
[3] Wong Y. W., Journal of Mechanics of Materials and Structures 1 pp 61–
[4] DOI: 10.1115/1.3173133 · Zbl 0635.73111 · doi:10.1115/1.3173133
[5] DOI: 10.1002/cnm.1630070408 · Zbl 0723.73080 · doi:10.1002/cnm.1630070408
[6] DOI: 10.1115/1.3173134 · Zbl 0635.73112 · doi:10.1115/1.3173134
[7] DOI: 10.1016/0045-7949(92)90056-6 · Zbl 0769.73080 · doi:10.1016/0045-7949(92)90056-6
[8] DOI: 10.1002/cnm.1630040103 · doi:10.1002/cnm.1630040103
[9] DOI: 10.1115/1.2787302 · Zbl 0899.73542 · doi:10.1115/1.2787302
[10] DOI: 10.1002/nme.832 · Zbl 1032.74664 · doi:10.1002/nme.832
[11] DOI: 10.1115/1.3176137 · Zbl 0729.73586 · doi:10.1115/1.3176137
[12] Miyamura T., Engineering Structures 23 pp 1407–
[13] DOI: 10.1142/S0219455403000926 · Zbl 1205.74181 · doi:10.1142/S0219455403000926
[14] DOI: 10.1007/978-94-017-0243-0 · doi:10.1007/978-94-017-0243-0
[15] DOI: 10.1016/j.engstruct.2003.12.011 · doi:10.1016/j.engstruct.2003.12.011
[16] Yang Y. B., Theory and Analysis of Nonlinear Framed Structures (1994)
[17] DOI: 10.1142/S0219455408002727 · doi:10.1142/S0219455408002727
[18] DOI: 10.1142/S0219455407002435 · Zbl 1205.74083 · doi:10.1142/S0219455407002435
[19] DOI: 10.1007/BF02736397 · Zbl 1104.74058 · doi:10.1007/BF02736397
[20] DOI: 10.2514/2.6854 · doi:10.2514/2.6854
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.