×

Computational performances of Morlet wavelet neural network for solving a nonlinear dynamic based on the mathematical model of the affection of Layla and Majnun. (English) Zbl 07700464

MSC:

65Lxx Numerical methods for ordinary differential equations
34Kxx Functional-differential equations (including equations with delayed, advanced or state-dependent argument)
26Axx Functions of one variable
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baghdadi, G., Jafari, S., Sprott, J. C., Towhidkhah, F. and Golpayegani, M. H., A chaotic model of sustaining attention problem in attention deficit disorder, Commun. Nonlinear Sci. Numer. Simul.20(1) (2015) 174-185. · Zbl 1304.37064
[2] Sprott, J. C., Dynamical models of happiness, Nonlinear Dyn. Psychol. Life Sci.9(1) (2005) 23-36.
[3] Jafari, S., Ansari, Z., Golpayegani, S. M. R. H. and Gharibzadeh, S., Is attention a “period window” in the chaotic brain?, J. Neuropsychiatry Clin. Neurosci.25(1) (2013) E05.
[4] Tabatabaei, S. S., Yazdanpanah, M. J., Jafari, S. and Sprott, J. C., Extensions in dynamic models of happiness: Effect of memory, Int. J. Happiness Dev.1(4) (2014) 344-356.
[5] Liao, X. and Ran, J., Hopf bifurcation in love dynamical models with nonlinear couples and time delays, Chaos Solitons Fractals31(4) (2007) 853-865. · Zbl 1152.34060
[6] Dercole, F. and Rinaldi, S., Love stories can be unpredictable: Jules et Jim in the vortex of life, Chaos24(2) (2014) 023134.
[7] Breitenecker, F., Judex, F., Popper, N., Breitenecker, K., Mathe, A. and Mathe, A., Love emotions between laura and petrarchan approach by mathematics and system dynamics, J. Comput. Inf. Technol.16(4) (2008) 255-269.
[8] Rozhansky, V. A. and Tsendin, L. D., Transport Phenomena in Partially Ionized Plasma (CRC Press, 2001).
[9] Alves-Pires, R., Nonlinear Dynamics in Particle Accelerators, Vol. 23 (World Scientific, 1996). · Zbl 0924.58091
[10] Newell, A. and Moloney, J., Nonlinear Optics (Addison-Wesley, Reading, Massachusetts, 1992). · Zbl 1054.78001
[11] Cveticanin, L., Resonant vibrations of nonlinear rotors, Mech. Mach. Theory30(4) (1995) 581-588.
[12] Farman, M., Akgül, A., Aldosary, S. F., Nisar, K. S. and Ahmad, A., Fractional order model for complex Layla and Majnun love story with chaotic behaviour, Alexandria Eng. J.61(9) (2022) 6725-6738.
[13] Sabir, Z., Umar, M., Raja, M. A. Z., Baskonus, H. M. and Gao, W., Designing of Morlet wavelet as a neural network for a novel prevention category in the HIV system, Int. J. Biomath.15(04) (2022) 2250012. · Zbl 1492.92111
[14] Ahmad, S., Ullah, A., Akgül, A. and Baleanu, D., Theoretical and numerical analysis of fractal fractional model of tumor-immune interaction with two different kernels, Alexandria Eng. J.61(7) (2022) 5735-5752.
[15] Xuan, L., Ahmad, S., Ullah, A., Saifullah, S., Akgül, A. and Qu, H., Bifurcations, stability analysis and complex dynamics of Caputo fractal-fractional cancer model, Chaos Solitons Fractals159 (2022) 112113. · Zbl 1505.37104
[16] Safdar, R., Jawad, M., Hussain, S., Imran, M., Akgül, A. and Jamshed, W., Thermal radiative mixed convection flow of MHD Maxwell nanofluid: Implementation of Buongiorno’s model, Chin. J. Phys.77 (2022) 1465-1478.
[17] Akgül, A. and Partohaghighi, M., New fractional modelling and control analysis of the circumscribed self-excited spherical strange attractor, Chaos Solitons Fractals158 (2022) 111956. · Zbl 1505.34100
[18] Liu, X., Ahmad, S., ur Rahman, M., Nadeem, Y. and Akgül, A., Analysis of a TB and HIV co-infection model under Mittag-Leffler fractal-fractional derivative, Phys. Scr.97(5) (2022) 054011.
[19] Goufo, E. F. D., Ravichandran, C. and Birajdar, G. A., Self-similarity techniques for chaotic attractors with many scrolls using step series switching, Math. Model. Anal.26(4) (2021) 591-611. · Zbl 1497.28004
[20] Logeswari, K., Ravichandran, C. and Nisar, K. S., Mathematical model for spreading of COVID-19 virus with the Mittag-Leffler kernel, Numerical Methods for Partial Differential Equations (2020), https://doi.org/10.1002/num.22652.
[21] Nisar, K. S., Logeswari, K., Vijayaraj, V., Baskonus, H. M. and Ravichandran, C., Fractional order modeling the Gemini Virus in capsicum annuum with optimal control, Fractal Fract.6(2) (2022) 61.
[22] Jumani, T. A., Mustafa, M. W., Hussain, Z., Rasid, M. M., Saeed, M. S., Memon, M. M., Khan, I. and Nisar, K. S., Jaya optimization algorithm for transient response and stability enhancement of a fractional-order PID based automatic voltage regulator system, Alexandria Eng. J.59(4) (2020) 2429-2440.
[23] Rahman, G., Ullah, Z., Khan, A., Set, E. and Nisar, K. S., Certain Chebyshev-type inequalities involving fractional conformable integral operators, Mathematics7(4) (2019) 364.
[24] Farman, M., Ahmad, A., Akgül, A., Saleem, M. U., Nisar, K. S. and Vijayakumar, V., Dynamical behavior of tumor-immune system with fractal-fractional operator, AIMS Math.7(5) (2022) 8751-8773.
[25] Yao, S. W., Farman, M., Amin, M., Inc, M., Akgül, A. and Ahmad, A., Fractional order COVID 19 model with transmission rout infected through environment, AIMS Math.7(4) (2022) 5156-5174.
[26] Farman, M., Akgül, A., Tekin, M. T., Akram, M. M., Ahmad, A., Mahmoud, E. E. and Yahia, I. S., Fractal fractional-order derivative for HIV/AIDS model with Mittag-Leffler kernel, Alexandria Eng. J.61(12) (2022) 10965-10980.
[27] Farman, M., Aslam, M., Akgül, A. and Jarad, F., On solutions of the stiff differential equations in chemistry kinetics with fractal-fractional derivatives, J. Comput. Nonlinear Dyn.17(7) (2022) 071007.
[28] Cveticanin, L., Approximate analytical solutions to a class of non-linear equations with complex functions, J. Sound Vib.157(2) (1992) 289-302. · Zbl 0925.73604
[29] Mahmoud, G. M. and Aly, S. A., On periodic solutions of parametrically excited complex non-linear dynamical systems, Physica A278(3-4) (2000) 390-404.
[30] Wu, X., Xu, Y. and Zhang, H., Random impacts of a complex damped system, Int. J. Non-Linear Mech.46(5) (2011) 800-806.
[31] Awan, S. E.et al., Numerical treatments to analyze the nonlinear radiative heat transfer in MHD nanofluid flow with solar energy, Arabian J. Sci. Eng.45(6) (2020) 4975-4994.
[32] Awan, S. E.et al., Numerical computing paradigm for investigation of micropolar nanofluid flow between parallel plates system with impact of electrical MHD and Hall current, Arabian J. Sci. Eng.46(1) (2021) 645-662.
[33] Shoaib, M.et al., Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet, Sci. Rep.10(1) (2020) 1-15.
[34] Jafari, S., Sprott, J. C. and Golpayegani, S. M. R. H., Layla and Majnun: A complex love story, Nonlinear Dyn.83(1) (2016) 615-622.
[35] Kumar, P., Erturk, V. S. and Murillo-Arcila, M., A complex fractional mathematical modeling for the love story of Layla and Majnun, Chaos Solitons Fractals150 (2021) 111091.
[36] Sabir, Z., Raja, M. A. Z., Guirao, J. L. and Saeed, T., Swarm intelligence procedures using Meyer wavelets as a neural network for the novel fractional order pantograph singular system, Fractal Fract.5(4) (2021) 277.
[37] Junsawang, P., Zuhra, S., Sabir, Z., Raja, M. A. Z., Shoaib, M., Botmart, T. and Weera, W., Numerical simulations of vaccination and Wolbachia on dengue transmission dynamics in the nonlinear model, IEEE Access10 (2022) 31116-31144.
[38] Raja, M. A. Z., Shoaib, M., Hussain, S., Nisar, K. S. and Islam, S., Computational intelligence of Levenberg-Marquardt backpropagation neural networks to study thermal radiation and Hall effects on boundary layer flow past a stretching sheet, Int. Commun. Heat Mass Transfer130 (2022) 105799.
[39] Sabir, Z.et al., Numerical investigations of the nonlinear smoke model using the Gudermannian neural networks, Math. Biosci. Eng.19(1) (2022) 351-370. · Zbl 1489.92174
[40] Sabir, Z.et al., An efficient stochastic numerical computing framework for the nonlinear higher order singular models, Fractal Fract.5(4) (2021) 176.
[41] Sabir, Z.et al., Design of Morlet wavelet neural network for solving the higher order singular nonlinear differential equations, Alexandria Eng. J.60(6) (2021) 5935-5947.
[42] Umar, M.et al., A stochastic intelligent computing with neuro-evolution heuristics for nonlinear SITR system of novel COVID-19 dynamics, Symmetry12(10) (2020) 1628.
[43] Umar, M.et al., Integrated neuro-swarm heuristic with interior-point for nonlinear SITR model for dynamics of novel COVID-19, Alexandria Eng. J.60(3) (2021) 2811-2824.
[44] Umar, M.et al., Neuro-swarm intelligent computing paradigm for nonlinear HIV infection model with CD4+ T-cells, Math. Comput. Simul.188 (2021) 241-253. · Zbl 07428998
[45] Umar, M.et al., A novel study of Morlet neural networks to solve the nonlinear HIV infection system of latently infected cells, Results Phys.25 (2021) 104235.
[46] Shoaib, M.et al., Heat transfer impacts on Maxwell nanofluid flow over a vertical moving surface with MHD using stochastic numerical technique via artificial neural networks, Coatings11(12) (2021) 1483.
[47] Shoaib, M.et al., Intelligent computing with Levenberg-Marquardt backpropagation neural networks for third-grade nanofluid over a stretched sheet with convective conditions, Arabian J. Sci. Eng.47 (2022) 8211-8229.
[48] Sabir, Z.et al., A neuro-swarming intelligence-based computing for second order singular periodic non-linear boundary value problems, Front. Phys.8 (2020) 224.
[49] Umar, M.et al., A stochastic numerical computing heuristic of SIR nonlinear model based on dengue fever, Results Phys.19 (2020) 103585.
[50] Sabir, Z., Guirao, J. L. and Saeed, T., Solving a novel designed second order nonlinear Lane-Emden delay differential model using the heuristic techniques, Appl. Soft Comput.102 (2021) 107105.
[51] Tao, Z., Huiling, L., Wenwen, W. and Xia, Y., GA-SVM based feature selection and parameter optimization in hospitalization expense modeling, Appl. Soft Comput.75 (2019) 323-332.
[52] Sabir, Z., Manzar, M. A., Raja, M. A. Z., Sheraz, M. and Wazwaz, A. M., Neuro-heuristics for nonlinear singular Thomas-Fermi systems, Appl. Soft Comput.65 (2018) 152-169.
[53] Ilbeigi, M., Ghomeishi, M. and Dehghanbanadaki, A., Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm, Sustain. Cities Soc.61 (2020) 102325.
[54] Altaf, F.et al., Adaptive evolutionary computation for nonlinear Hammerstein control autoregressive systems with key term separation principle, Mathematics10(6) (2022) 1001.
[55] Mehmood, A.et al., Integrated computational intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms and sequential quadratic programming, Neural Comput. Appl.32(14) (2020) 10337-10357.
[56] Sabir, Z., Khalique, C. M., Raja, M. A. Z. and Baleanu, D., Evolutionary computing for nonlinear singular boundary value problems using neural network, genetic algorithm and active-set algorithm, Eur. Phys. J. Plus136(2) (2021) 1-19.
[57] Sabir, Z., Stochastic numerical investigations for nonlinear three-species food chain system, Int. J. Biomath.15(4) (2022) 2250005. · Zbl 1492.92136
[58] He, X. and Yang, P., The primal-dual active set method for a class of nonlinear problems with T-monotone operators, Math. Probl. Eng.2019 (2019) 2912301. · Zbl 1435.90134
[59] Raja, M. A. Z., Umar, M., Sabir, Z., Khan, J. A. and Baleanu, D., A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head, Eur. Phys. J. Plus133(9) (2018) 1-21.
[60] Umar, M., Raja, M. A. Z., Sabir, Z., Alwabli, A. S. and Shoaib, M., A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment, Eur. Phys. J. Plus135(7) (2020) 1-23.
[61] Naz, S.et al., Neuro-intelligent networks for Bouc-Wen hysteresis model for piezostage actuator, Eur. Phys. J. Plus136(4) (2021) 1-20.
[62] Sabir, Z., Raja, M. A. Z. and Baleanu, D., Fractional mayer neuro-swarm heuristic solver for multi-fractional order doubly singular model based on Lane-Emden equation, Fractals29(5) (2021) 2140017. · Zbl 1481.65104
[63] Sabir, Z., Baleanu, D., Raja, M. A. Z. and Guirao, J. L., Design of neuro-swarming heuristic solver for multi-pantograph singular delay differential equation, Fractals29(5) (2021) 2140022. · Zbl 1481.65098
[64] Bukhari, A. H.et al., Design of intelligent computing networks for nonlinear chaotic fractional Rossler system, Chaos Solitons Fractals157 (2022) 111985. · Zbl 1498.34167
[65] Kiani, A. K., Khan, W. U., Raja, M. A. Z., He, Y., Sabir, Z. and Shoaib, M., Intelligent backpropagation networks with bayesian regularization for mathematical models of environmental economic systems, Sustainability13(17) (2021) 9537.
[66] Wang, B.et al., Numerical computing to solve the nonlinear corneal system of eye surgery using the capability of Morlet wavelet artificial neural networks, Fractals30 (2022) 2240147. · Zbl 07578007
[67] Wang, B.et al., Gudermannian neural networks to investigate the Lienard differential model, Fractals30 (2022) 2250050. · Zbl 07537366
[68] Sabir, Z., Raja, M. A. Z., Guirao, J. L. and Saeed, T., Meyer wavelet neural networks to solve a novel design of fractional order pantograph Lane-Emden differential model, Chaos Solitons Fractals152 (2021) 111404. · Zbl 1503.65152
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.