×

A novel integration scheme for solution of consistent mass matrix in free and forced vibration analysis. (English) Zbl 1388.74050

Summary: The solution of mass matrix is one of the important parts for dynamic analysis of finite element method (FEM). In general FEM procedure, the numerical integration of consistent mass matrix needs to carry out the same operation as the stiffness matrix, which includes the coordinate mapping and computing of Jacobian matrix. There has been proposed smoothed finite element method for evaluating stiffness matrix to avoid the coordinate mapping and computing of Jacobian matrix in the numerical integration. In this work, a novel integration scheme is proposed to calculate the consistent mass matrix, in which a symbolic integration is implemented by combining indefinite integral with Gauss divergence theorem. Then, the novel integration scheme of consistent mass matrix is incorporated with the smoothing strain technique for free and forced vibration analysis. The accuracy and the convergence properties of the present method are investigated by several numerical examples. It can be concluded from the numerical results that the present method is robust and stability for dynamic analysis.

MSC:

74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics

Software:

XFEM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn. Butterworth, Heinemann, Oxford · Zbl 0991.74002
[2] Liu GR, Dai KY, Nguyen TT (2007) A smoothed finite element method for mechanics problems. Comput Mech 39(6):859-877 · Zbl 1169.74047 · doi:10.1007/s00466-006-0075-4
[3] Chen JS, Wu CT, Yoon S et al (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Meth Eng 50(2):435-466 · Zbl 1011.74081 · doi:10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
[4] Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2010) A theoretical study on the smoothed FEM (S-FEM) models: properties, accuracy and convergence rates. Int J Numer Meth Eng 84(10):1222-1256 · Zbl 1202.74180 · doi:10.1002/nme.2941
[5] Bordas SPA, Rabczuk T, Hung NX et al (2010) Strain smoothing in FEM and XFEM. Comput Struct 88(23):1419-1443 · doi:10.1016/j.compstruc.2008.07.006
[6] Nguyen-Thoi T, Vu-Do HC, Rabczuk T et al (2010) A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. Comput Methods Appl Mech Eng 199(45):3005-3027 · Zbl 1231.74432 · doi:10.1016/j.cma.2010.06.017
[7] Liu GR, Chen L, Nguyen-Thoi T et al (2010) A novel singular node-based smoothed finite element method (NS-FEM) for upper bound solutions of fracture problems. Int J Numer Meth Eng 83(11):1466-1497 · Zbl 1202.74179 · doi:10.1002/nme.2868
[8] Nguyen-Xuan H, Liu GR, Nguyen-Thoi T et al (2009) An edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structures. Smart Mater Struct 18(6):065015 · doi:10.1088/0964-1726/18/6/065015
[9] Liu GR, Nguyen-Thoi T, Lam KY (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320(4):1100-1130 · doi:10.1016/j.jsv.2008.08.027
[10] Phan-Dao HH, Nguyen-Xuan H, Thai-Hoang C et al (2013) An edge-based smoothed finite element method for analysis of laminated composite plates. Int J Comput Methods 10(01):1340005 · Zbl 1359.74434 · doi:10.1142/S0219876213400057
[11] Luong-Van H, Nguyen-Thoi T, Liu GR et al (2014) A Cell-based smoothed Finite Element Method using Mindlin plate element (CS-FEM-MIN3) for dynamic response of composite plates on viscoelastic foundation. Eng Anal Bound Elem 42:8-19 · Zbl 1297.74122 · doi:10.1016/j.enganabound.2013.11.008
[12] Nguyen-Thoi T, Phung-Van P, Thai-Hoang C et al (2013) A cell-based smoothed discrete shear gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures. Int J Mech Sci 74:32-45 · doi:10.1016/j.ijmecsci.2013.04.005
[13] Chen L, Rabczuk T, Bordas SPA et al (2012) Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth. Comput Methods Appl Mech Eng 209:250-265 · Zbl 1243.74170 · doi:10.1016/j.cma.2011.08.013
[14] Liu P, Bui TQ, Zhang C et al (2012) The singular edge-based smoothed finite element method for stationary dynamic crack problems in 2D elastic solids. Comput Methods Appl Mech Eng 233:68-80 · Zbl 1253.74108 · doi:10.1016/j.cma.2012.04.008
[15] Dai KY, Liu GR (2007) Free and forced vibration analysis using the smoothed finite element method (SFEM). J Sound Vib 301(3):803-820 · doi:10.1016/j.jsv.2006.10.035
[16] Nguyen-Thoi T, Phung-Van P, Rabczuk T T et al (2013) Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM). Int J Comput Methods 10(01):1340008 · Zbl 1359.74433 · doi:10.1142/S0219876213400082
[17] Kim K (1993) A review of mass matrices for eigenproblems. Comput Struct 46(6):1041-1048 · doi:10.1016/0045-7949(93)90090-Z
[18] Wu SR (2006) Lumped mass matrix in explicit finite element method for transient dynamics of elasticity. Comput Methods Appl Mech Eng 195(44):5983-5994 · Zbl 1122.74049 · doi:10.1016/j.cma.2005.10.008
[19] Cohen G, Joly P, Tordjman N (1994) Higher-order finite elements with mass-lumping for the 1D wave equation. Finite Elem Anal Des 16(3):329-336 · Zbl 0865.65072 · doi:10.1016/0168-874X(94)90075-2
[20] Babuška I, Osborn J (1991) Eigenvalue problems. Handb Numer Anal 2:641-787 · Zbl 0875.65087
[21] Dasgupta G (2003) Integration within polygonal finite elements. J Aerosp Eng 16(1):9-18 · doi:10.1061/(ASCE)0893-1321(2003)16:1(9)
[22] Thiagarajan V, Shapiro V (2014) Adaptively weighted numerical integration over arbitrary domains. Comput Math Appl 67(9):1682-1702 · Zbl 1362.65029 · doi:10.1016/j.camwa.2014.03.001
[23] Li H, Wang QX, Lam KY (2004) Development of a novel meshless Local Kriging (LoKriging) method for structural dynamic analysis. Comput Methods Appl Mech Eng 193(23):2599-2619 · Zbl 1067.74598 · doi:10.1016/j.cma.2004.01.010
[24] Wang Y, Hu D, Yang G et al (2015) An effective sub-domain smoothed Galerkin method for free and forced vibration analysis. Meccanica 50(5):1285-1301 · Zbl 1314.65129 · doi:10.1007/s11012-014-0088-6
[25] Belytschko T (1983) An overview of semidiscretization and time integration procedures. In: Computational methods for transient analysis. Amsterdam, North-Holland, pp 1-65 · Zbl 0542.73106
[26] Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York · Zbl 0266.73008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.