×

On iterations of Steiner symmetrizations. (English) Zbl 1360.60035

Let \(N\) be a positive integer and let \(u \in \mathbb{S}^{N-1} := \{ x \in \mathbb{R}^N : \| x \| = 1 \}\) denote the unit sphere. The Steiner symmetrization in the direction \(u\) is a mapping \(S_u\) of measurable subsets of \(\mathbb{R}^N\) to measurable subsets of \(\mathbb{R}^N\), acting as follows. Let \(E \subseteq \mathbb{R}^N\) be measurable, and let \(l_u := \{ \lambda u : \lambda \in \mathbb{R} \}\) denote the line through the origin in direction \(u\). Let \(u^\perp\) denote the \((N-1)\)-dimensional subspace orthogonal to \(u\). For each \(x \in u^\perp\) define \(c(x)\) as follows. If \(E \cap ( x + l_u ) = \emptyset\), then \(c(x) := \emptyset\). Otherwise, \(c(x)\) is the closed line segment on \(x + l_u\) centred at \(x\) with length equal to the one-dimensional outer measure of \(E \cap ( x + l_u )\). Then \(S_u E\) is defined as the union over all \(x \in u^\perp\) of \(c(x)\).
The main result of the paper is as follows. Suppose that \(U\) is a countable and dense subset of \(\mathbb{S}^{N-1}\). Then there exists an ordering \(\{ u_n \}\) of \(U\) such that the Steiner symmetrizations of any compact set \(K \subset \mathbb{R}^N\), taken successively in directions \(u_n\), converge in the Hausdorff distance to the ball \(K^*\) centred at the origin having the same volume as \(K\).

MSC:

60D05 Geometric probability and stochastic geometry
52A40 Inequalities and extremum problems involving convexity in convex geometry
28A20 Measurable and nonmeasurable functions, sequences of measurable functions, modes of convergence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Betta, M.F., Brock, F., Mercaldo, A., Posteraro, M.R.: A weighted isoperimetric inequality and applications to symmetrization. J. lnequal. Appl. 4, 215-240 (1999) · Zbl 1029.26018
[2] Bianchi, G., Klain, D., Lutwak, E., Yang, D., Zhang, G.: A countable set of directions is sufficient for Steiner symmetrization. Adv. Appl. Math. 47, 869-873 (2011) · Zbl 1230.52007 · doi:10.1016/j.aam.2011.04.005
[3] Burchard, A.: Steiner symmetrization is continuous in \[W^{ 1, p}\] W1,p, GAFA. Geom. Funct. Anal. 7, 823-860 (1997) · Zbl 0912.46034 · doi:10.1007/s000390050027
[4] Burchard, A., Bianchi, G., Gronchi, P., Volčič, A.: Convergence in shape of Steiner symmetrizations. Indiana Univ. Math. J. 61(4), 1695-1710 (2012) · Zbl 1290.52008 · doi:10.1512/iumj.2012.61.5087
[5] Burchard, A., Fortier, M.: Random polarizations. Adv. Math. 334, 550-573 (2013) · Zbl 1270.60017 · doi:10.1016/j.aim.2012.10.010
[6] Chlebik, M., Cianchi, A., Fusco, N.: The perimeter inequality under Steiner symmetrization: cases of equality. Ann. Math. 162, 525-555 (2005) · Zbl 1087.28003 · doi:10.4007/annals.2005.162.525
[7] Coupier, D., Davydov, Yu.: Random symmetrization of convex bodies. Adv. Appl. Probab. 46(3), 603-621 (2014) · Zbl 1319.60012 · doi:10.1017/S000186780000728X
[8] Danielli, D., Garofalo, N., Nhieu, D.M.: A partial solution of the isoperimetric problem for the Heisenberg group. Forum Math. 20, 99-143 (2008) · Zbl 1142.53021 · doi:10.1515/FORUM.2008.005
[9] De Giorgi, E.: Su una teoria generale della misura \[(r-1)\](r-1)-dimensionale in uno spazio ad \[r\] r dimensioni. Ann. Mat. Pura Appl. 36(4), 191-213 (1954) · Zbl 0055.28504 · doi:10.1007/BF02412838
[10] De Giorgi, E.: Sulla proprietà isoperimetrica della sfera nella classe degli insiemi aventi frontiera orientata di misura finita. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I 5, 33-44 (1958) · Zbl 0116.07901
[11] Klain, D.: Steiner symmetrization using a finite set of directions. Adv. Appl. Math. 48, 340-353 (2012) · Zbl 1244.52007 · doi:10.1016/j.aam.2011.09.004
[12] Mani, P.: Random Steiner symmetrizations. Stud. Sci. Math. Hung. 21(3-4), 373-378 (1986) · Zbl 0636.52006
[13] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory (Encyclopedia of Mathematics and its Applications) (1993) · Zbl 1230.52007
[14] Talenti, G.; Gruber, PM (ed.); Wills, JM (ed.), The standard isoperimetric theorem, 73-123 (1993), Amsterdam · Zbl 0799.51015 · doi:10.1016/B978-0-444-89596-7.50008-0
[15] Van Schaftingen, J.: Approximation of symmetrizations and symmetry of critical points. Topol. Methods Nonlinear Anal. 28(1), 61-85 (2006) · Zbl 1110.28014
[16] Volčič, A.: Random Steiner symmetrizations of sets and functions. Calc. Var. Partial Differ. Equ. 46(3-4), 555-569 (2013) · Zbl 1277.60025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.