zbMATH — the first resource for mathematics

Soliton fusion and fission in a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids. (English) Zbl 1410.76058
Summary: Under investigation in this paper is a generalized variable-coefficient fifth-order Korteweg-de Vries equation, which describes the interaction between a water wave and a floating ice cover or the gravity-capillary waves. Via the Hirota method, Bell-polynomial approach and symbolic computation, bilinear forms, \(N\)-soliton solutions, Bäcklund transformation and Lax pair are derived. Infinitely-many conservation laws are obtained based on the Bell-polynomial-typed Bäcklund transformation. Soliton fusion and fission, and influence of the variable coefficients from the equation are analyzed: Both variable coefficients \(c(t)\) and \(n(t)\) are in direct proportion to the soliton velocities but have no effect on the amplitudes, while another constant coefficient \(\alpha\) can affect the types of the interactions, in the sense of the elastic or inelastic. Elastic-inelastic interactions among the three solitons are presented as well.

76D33 Waves for incompressible viscous fluids
35Q53 KdV equations (Korteweg-de Vries equations)
35C08 Soliton solutions
35Q51 Soliton equations
Full Text: DOI
[1] Barnett, M. P.; Capitani, J. F.; Gathen, J. V.Z.; Gerhard, J., Symbolic calculation in chemistry: selected examples, Int. J. Quantum Chem., 100, 80-104, (2004)
[2] Saleh, M. F.; Chang, W.; Travers, J. C.; Russell, P. S.J.; Biancalana, F., Plasma-induced asymmetric self-phase modulation and modulational instability in gas-filled hollow-core photonic crystal fibers, Phys. Rev. Lett., 109, (2012)
[3] Gorza, S. P.; Deconinck, B.; Emplit, P.; Trogdon, T.; Haelterman, M., Experimental demonstration of the oscillatory snake instability of the bright soliton of the (2+1)d hyperbolic nonlinear Schrödinger equation, Phys. Rev. Lett., 106, 094101-094104, (2011)
[4] Pitaevskii, L. P.; Stringari, S., Bose-Einstein Condensation, (2003), Cambridge University, Cambridge
[5] Drazin, P. G.; Johnson, R. S., Solitons: an introduction, (1989), Cambridge University Press, Cambridge · Zbl 0661.35001
[6] Bekir, A., Painlevé test for some (2+1)-dimensional nonlinear equations, Chaos Solitons Fractals, 32, 449-455, (2007) · Zbl 1139.37306
[7] Hirota, R., The Direct Method in Soliton Theory, (2004), Cambridge University Press, Cambridge
[8] Bell, E. T., Exponential polynomials, Ann. Math., 35, 258-277, (1934) · Zbl 0009.21202
[9] Lambert, F.; Springael, J., On a direct procedure for the disclosure of Lax pairs and Bäcklund transformations, Chaos Solitons Fractals, 12, 2821-2832, (2001) · Zbl 1005.37043
[10] Lambert, F.; Springael, J., Soliton equations and simple combinatorics, Acta Appl. Math., 102, 147-178, (2008) · Zbl 1156.35078
[11] Matveev, V. B., Generalized Wronskian formula for solutions of the KdV equations: first applications, Phys. Lett. A, 166, 205-208, (1992)
[12] Zabusky, N. J.; Kruskal, M. D., Interaction of “solitons” in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15, 240-243, (1965) · Zbl 1201.35174
[13] Kanna, T.; Lakshmanan, M., Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations, Phys. Rev. Lett., 86, 5043-5046, (2001)
[14] Pashaev, O. K.; Lee, J. H.; Rogers, C., Soliton resonances in a generalized nonlinear Schrödinger equation, J. Phys. A, 41, 452001-452009, (2008) · Zbl 1157.35106
[15] Lan, Z. Z.; Gao, Y. T.; Yang, J. W.; Su, C. Q.; Zuo, D. W., Solitons, backlund transformation, Lax pair, and infinitely many conservation law for a (2+1)-dimensional generalised variable-coefficient shallow water wave equation, Z. Naturforsch. A, 71, 69-80, (2016)
[16] Su, C. Q.; Gao, Y. T.; Yang, J. W.; Zuo, D. W., Nonautonomous solitons in terms of the double Wronskian determinant for a variable-coefficient Gross Pitaevskii equation in the Bose Einstein condensate, Mod. Phys. Lett. B, 30, 1650103, (2016)
[17] Zuo, D. W.; Gao, Y. T.; Xue, L.; Feng, Y. J., Lax pair, rogue-wave and soliton solutions for a variable-coefficient generalized nonlinear schrodinger equation in an optical fiber, fluid or plasma, Opt. Quant. Elect., 48, 76, (2016)
[18] Zhao, H. Q., Soliton propagation and collision in a variable-coefficient coupled Korteweg-de Vries equation, Eur. Phys. J. B, 85, 302-307, (2012)
[19] Yong, X. L.; Yang, Y. P.; Chen, D. G., Soliton fission and fusion of a new two-component Korteweg-de Vries (KdV) equation, Comput. Math. Appl., 62, 1765-1771, (2011) · Zbl 1231.35218
[20] Lian, Z. J.; Lou, S. Y., Symmetries and exact solutions of the Sharma-tass-Olver equation, Nonlinear Anal., 63, 1167-1177, (2005) · Zbl 1224.37038
[21] Zhang, Y.; You, Y. C.; Ma, W. X.; Zhao, H. Q., Resonance of solitons in a coupled higher-order ito equation, J. Math. Anal. Appl., 394, 121-128, (2012) · Zbl 1251.35117
[22] Wu, X.; Tang, D. Y.; Zhang, H.; Zhao, L. M., Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser, Opt. Express, 17, 5580-5584, (2009)
[23] Duan, L.; Liu, X.; Mao, D.; Wang, L.; Wang, G., Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser, Opt. Express, 20, 265-270, (2012)
[24] Kaup, D. J., Nonlinear resonances and colliding spherical ion-acoustic solitons, Physica D, 2, 389-394, (1981) · Zbl 1194.35346
[25] Maruno, K.; Biondini, G., Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete analogues, J. Phys. A, 37, 11819-11839, (2004) · Zbl 1071.37055
[26] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19, 1095-1097, (1967) · Zbl 1103.35360
[27] Hirota, R.; Ito, M., Resonance of solitons in one dinmension, J. Phys. Soc. Jpn., 52, 744-748, (1983)
[28] Lin, J.; Wu, F. M., Fission and fusion of localized coherent structures for a (2+1)-dimensional KdV equation, Chaos Solitons Fractals, 19, 189-193, (2004) · Zbl 1092.35522
[29] Wang, Y. H; Chen, Y., Bell polynomials approach for two higher-order KdV-type equations in fluids, Nonlinear Anal. Real World Applications, 31, 533-551, (2016) · Zbl 1342.35313
[30] Wang, Y. H.; Temuer, C.; Yang, Y. Q., Integrability for the generalized variable-coefficient fifth-order Korteweg-de Vries equation with Bell polynomials, Appl. Math. Lett., 29, 13-19, (2014) · Zbl 1319.35228
[31] Hao, H. H.; Zhang, D. J., Resonances of line solitons in a non-isospectral Kadomtsev-Petviashvili equation, J. Phys. Soc. Jpn., 77, 045001-045002, (2008)
[32] Lan, Z. Z.; Gao, Y. T.; Yang, J. W.; Su, C. Q.; Zhao, C.; Gao, Z., Solitons, backlund transformation and Lax pair for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics, Appl. Math. Lett., 60, 96-100, (2016) · Zbl 1342.35305
[33] Su, C. Q.; Gao, Y. T.; Xue, L.; Wang, Q. M., Nonautonomous solitons, breathers and rogue waves for the Gross-Pitaevskii equation in the Bose-Einstein condensate, Commun. Nonl. Sci. Numer. Simulat., 36, 457-467, (2016)
[34] Su, C. Q.; Gao, Y. T.; Xue, L.; Yu, X.; Shen, Y. J., Exterior differential expression of the (1+1)-dimensional nonlinear evolution equation with Lax integrability, J. Math. Anal. Appl., 435, 735-745, (2016) · Zbl 1360.37166
[35] Yu, X.; Gao, Y. T.; Sun, Z. Y.; Liu, Y., n-soliton solutions, Bäcklund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg-de Vries equation, Phys. Scr., 81, 045402-045407, (2010) · Zbl 1191.35242
[36] Hunter, J. K.; Scheurle, J., Existence of perturbed solitary wave solutions to a model equation for water waves, Physica D, 32, 253-268, (1988) · Zbl 0694.35204
[37] Boyd, J. P., Weakly non-local solitons for capillary-gravity waves: fifth-degree Korteweg-de Vries equation, Physica D, 48, 129-146, (1991) · Zbl 0728.35100
[38] Grimshaw, R.; Joshi, N., Weakly nonlocal solitary waves in a singularly perturbed Korteweg-de Vries equation, SIAM J. Appl. Math., 55, 124-135, (1995) · Zbl 0814.34043
[39] Champneys, A. R.; Groves, M. D., A global investigation of solitary-wave solutions to a two-parameter model for water waves, J. Fluid Mech., 342, 199-229, (1997) · Zbl 0913.76010
[40] Shan, W. R.; Yan, T. Z.; Lv, X.; Li, M.; Tian, B., Analytic study on the Sawada-Kotera equation with a nonvanishing boundary condition in fluids, Commun. Nonlinear Sci. Numer. Simul., 18, 1568-1575, (2013) · Zbl 1311.35264
[41] Wadati, M.; Sanuki, H.; Konno, K., Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws, Prog. Theor. Phys., 53, 419-436, (1975) · Zbl 1079.35506
[42] Nimmo, J. J., A bilinear Bäcklund transformation for the nonlinear Schrödinger equation, Phys. Lett. A, 99, 279-280, (1983)
[43] Sanuki, H.; Konno, K., Conservation laws of sine-Gordon equation, Phys. Lett. A, 48, 221-222, (1974)
[44] Konno, K.; Sanuki, H.; Ichikawa, Y. H., Conservation laws of nonlinear-evolution equations, Prog. Theor. Phys., 52, 886-889, (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.