×

On solving systems of autonomous ordinary differential equations by reduction to a variable of an algebra. (English) Zbl 1254.34053

Summary: A new technique for solving a certain class of systems of autonomous ordinary differential equations over \(\mathbb K^n\) is introduced (\(\mathbb K\) being the real or complex field). The technique is based on two observations: (1) if \(\mathbb K^n\) has the structure of certain normed, associative, commutative algebras with a unit \(\mathbb A\) over \(\mathbb K\), then there is a scheme for reducing the system of differential equations to an autonomous ordinary differential equation on one variable of the algebra; (2) a technique, previously introduced for solving differential equations over \(\mathbb C\) is shown to work on the class mentioned in the previous paragraph. In particular, it is shown that the algebras in question include algebras linearly equivalent to the tensor product of matrix algebras of certain normal forms.

MSC:

34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
16-XX Associative rings and algebras
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. Bers, Theory of Pseudo-Analytic Functions, Institute for Mathematics and Mechanics, New York University, New York, NY, USA, 1953. · Zbl 0051.31603
[2] L. Bers, “An outline of the theory of pseudoanalytic functions,” Bulletin of the American Mathematical Society, vol. 62, pp. 291-331, 1956. · Zbl 0072.07703 · doi:10.1090/S0002-9904-1956-10037-2
[3] M. Düz and K. Koca, “A Dirichlet problem for generalized analytic functions,” Sel\ccuk Journal of Applied Mathematics, vol. 7, no. 1, pp. 9-15, 2006. · Zbl 1124.30307
[4] S. B. Klimentov, “BMO classes of generalized analytic functions,” Vladikavkazskiĭ Matematicheskiĭ Zhurnal, vol. 8, no. 1, pp. 27-39, 2006. · Zbl 1313.30176
[5] V. Kravchenko, “On the relationship between p-analytic functions and Schrödinger equation,” Zeitschrift für Analysis und ihre Anwendungen, vol. 24, no. 3, pp. 487-496, 2005. · Zbl 1100.30040 · doi:10.4171/ZAA/1252
[6] A. Meziani, “Elliptic planar vector fields with degeneracies,” Transactions of the American Mathematical Society, vol. 357, no. 10, pp. 4225-4248, 2005. · Zbl 1071.35031 · doi:10.1090/S0002-9947-04-03658-X
[7] Le Thu Hoai and W. Tutschke, “Associated spaces defined by ordinary differential equations,” Zeitschrift für Analysis und ihre Anwendungen, vol. 25, no. 3, pp. 385-392, 2006. · Zbl 1107.35005 · doi:10.4171/ZAA/1295
[8] W. Tutschke, “Interactions between partial differential equations and generalized analytic functions,” Cubo, vol. 6, no. 1, pp. 281-292, 2004. · Zbl 1085.35005
[9] W. Tutschke, “Generalized analytic functions in higher dimensions,” Georgian Mathematical Journal, vol. 14, no. 3, pp. 581-595, 2007. · Zbl 1132.30351
[10] I. N. Vekua, Generalized analytic functions, Pergamon Press, Addison-Wesley, London, UK, 1962. · Zbl 0100.07603
[11] Z.-l. Xu, “Mixed elastico-plasticity problems with partially unknown boundaries,” Acta Mathematicae Applicatae Sinica (English Series), vol. 23, no. 4, pp. 629-636, 2007. · Zbl 1137.35442 · doi:10.1007/s10255-007-0401
[12] M. Zabarankin and P. Krokhmal, “Generalized analytic functions in 3D Stokes flows,” The Quarterly Journal of Mechanics and Applied Mathematics, vol. 60, no. 2, pp. 99-123, 2007. · Zbl 1116.76024 · doi:10.1093/qjmam/hbl026
[13] M. Zabarankin, “The framework of k-harmonically analytic functions for three-dimensional Stokes flow problems. I,” SIAM Journal on Applied Mathematics, vol. 69, no. 3, pp. 845-880, 2008. · Zbl 1177.35158 · doi:10.1137/080715913
[14] B. Ziemian, “Generalized analytic functions with applications to singular ordinary and partial differential equations,” Dissertationes Mathematicae (Rozprawy Matematyczne), vol. 354, 100 pages, 1996. · Zbl 0868.46034
[15] K. Hockett and S. Ramamurti, “Dynamics near the essential singularity of a class of entire vector fields,” Transactions of the American Mathematical Society, vol. 345, no. 2, pp. 693-703, 1994. · Zbl 0810.34004 · doi:10.2307/2154994
[16] T. Newton and T. Lofaro, “On using flows to visualize functions of a complex variable,” Mathematics Magazine, vol. 69, no. 1, pp. 28-34, 1996. · Zbl 0857.30001 · doi:10.2307/2691391
[17] A. Garijo, A. Gasull, and X. Jarque, “Local and global phase portrait of equation z\?=f(z),” Discrete and Continuous Dynamical Systems A, vol. 17, no. 2, pp. 309-329, 2007. · Zbl 1125.34025 · doi:10.3934/dcds.2007.17.309
[18] A. Alvarez-Parrilla, A. Gómez-Arciga, and A. Riesgo-Tirado, “Newton vector fields on the plane and on the torus,” Complex Variables and Elliptic Equations, vol. 54, no. 5, pp. 440-461, 2009. · Zbl 1166.30001 · doi:10.1080/17476930902755658
[19] A. Alvarez-Parrilla, J. Mucino-Raymundo, S. Solorza-Calderon, and C. Yee-Romero, Complex Analytic Vector Fields: Geometry, Dynamics and Visualization, 2009.
[20] H. E. Benzinger, “Julia sets and differential equations,” Proceedings of the American Mathematical Society, vol. 117, no. 4, pp. 939-946, 1993. · Zbl 0772.34038 · doi:10.2307/2159519
[21] F. von Haeseler and H. Kriete, “The relaxed Newton’s method for rational functions,” Random and Computational Dynamics, vol. 3, no. 1-2, pp. 71-92, 1995. · Zbl 0839.58034
[22] F. von Haeseler and H. O. Peitgen, “Newton’s method and complex dynamical systems,” Acta Applicandae Mathematicae, vol. 13, no. 1-2, pp. 3-58, 1988. · Zbl 0671.30023 · doi:10.1007/BF00047501
[23] S. Smale, “A convergent process of price adjustment and global Newton methods,” Journal of Mathematical Economics, vol. 3, no. 2, pp. 107-120, 1976. · Zbl 0354.90018 · doi:10.1016/0304-4068(76)90019-7
[24] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, 1978. · Zbl 0706.46001
[25] W. C. Brown, Matrices Over Commutative Rings, Marcel Dekker, New York, NY, USA, 1993. · Zbl 0782.15001
[26] E. R. Lorch, “The theory of analytic functions in normed Abelian vector rings,” Transactions of the American Mathematical Society, vol. 54, pp. 414-425, 1943. · Zbl 0060.27202 · doi:10.2307/1990255
[27] J. A. Ward, “From generalized Cauchy-Riemann equations to linear algebras,” Proceedings of the American Mathematical Society, vol. 4, no. 3, pp. 456-461, 1953. · Zbl 0050.08604 · doi:10.2307/2032151
[28] R. D. Wagner, “The generalized Laplace equations in a function theory for commutative algebras,” Duke Mathematical Journal, vol. 15, pp. 455-461, 1948. · Zbl 0030.25202 · doi:10.1215/S0012-7094-48-01544-0
[29] P. W. Ketchum, “Analytic functions of hypercomplex variables,” Transactions of the American Mathematical Society, vol. 30, no. 4, pp. 641-667, 1928. · JFM 54.0374.04 · doi:10.2307/1989440
[30] R. S. Pierce, Associative Algebras, Springer, Berlin, Germany, 1982. · Zbl 0497.16001
[31] L. V. Ahlfors, Complex Analysis, An Introduction to the Theory of Analytic Functions of One Complex Variable, McGraw-Hill, New York, NY, USA, 3rd edition, 1979. · Zbl 0052.30503
[32] R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable, vol. 40 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, USA, 2nd edition, 2002. · Zbl 0988.30001
[33] S. G. Krantz, Function Theory of Several Complex Variables, 1992. · Zbl 0776.32001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.