×

On a class of sixth-order Cahn-Hilliard-type equations with logarithmic potential. (English) Zbl 1450.35136

Summary: We consider a class of sixth-order Cahn-Hilliard-type equations with logarithmic potential. This system is closely connected to some important phase-field models relevant in different applications, for instance, the functionalized Cahn-Hilliard equation that describes phase separation in mixtures of amphiphilic molecules in solvent, and the Willmore regularization of the Cahn-Hilliard equation for anisotropic crystal and epitaxial growth. The singularity of the configuration potential guarantees that the solution always stays in the physically relevant domain \([-1,1]\). Meanwhile, the resulting system is characterized by some highly singular diffusion terms that make the mathematical analysis more involved. We prove existence and uniqueness of global weak solutions and show their parabolic regularization property for any positive time. In addition, we investigate long-time behavior of the system, proving existence of the global attractor for the associated dynamical process in a suitable complete metric space.

MSC:

35K35 Initial-boundary value problems for higher-order parabolic equations
35K55 Nonlinear parabolic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
47H05 Monotone operators and generalizations
35B41 Attractors
35B65 Smoothness and regularity of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] H. Abels and M. Wilke, Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal., 67 (2007), pp. 3176-3193. · Zbl 1121.35018
[2] H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984. · Zbl 0561.49012
[3] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992. · Zbl 0778.58002
[4] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. · Zbl 0328.47035
[5] V. Barbu, P. Colli, G. Gilardi, and M. Grasselli, Existence, uniqueness, and longtime behavior for a nonlinear Volterra integrodifferential equation, Differential Integral Equations, 13 (2000), pp. 1233-1262. · Zbl 0981.45006
[6] H. Brézis, Intégrales convexes dans les espaces de Sobolev, Israel J. Math., 13 (1972), pp. 9-23. · Zbl 0249.46017
[7] H. Brézis, Opérateurs Maximaux Monotones et Sémi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Math. Stud. 5, North-Holland, Amsterdam, 1973. · Zbl 0252.47055
[8] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), pp. 258-267. · Zbl 1431.35066
[9] F. Chen and J. Shen, Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems, Commun. Comput. Phys., 13 (2013), pp. 1189-1208. · Zbl 1388.65117
[10] Y. Chen, J. S. Lowengrub, J. Shen, C. Wang, and S. Wise, Efficient energy stable schemes for isotropic and strongly anisotropic Cahn-Hilliard systems with the Willmore regularization, J. Comput. Phys., 365 (2018), pp. 56-73. · Zbl 1395.65014
[11] K. Cheng, C. Wang, S. Wise, and Z. Yuan, Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation, Discrete Cont. Dyn. Sys. S, 13 (2020), pp. 2211-2229. · Zbl 1450.35135
[12] L. Cherfils, A. Miranville, and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), pp. 561-596. · Zbl 1250.35129
[13] A. Christlieb, J. Jones, K. Promislow, B. Wetton, and M. Willoughby, High accuracy solutions to energy gradient flows from material science models, J. Comput. Phys., 257 (2014), pp. 193-215. · Zbl 1349.65510
[14] S. Dai, Q. Liu, and K. Promislow, Weak solutions for the functionalized Cahn-Hilliard equation with degenerate mobility, Appl. Anal., to appear, https://doi.org/10.1080/00036811.2019.1585536. · Zbl 1455.35130
[15] S. Dai and K. Promislow, Geometric evolution of bilayers under the functionalized Cahn-Hilliard equation, Proc. Roy. Soc. A, 469 (2013), 20120505. · Zbl 1371.80027
[16] S. Dai and K. Promislow, Competitive geometric evolution of amphiphilic interfaces, SIAM J. Math. Anal., 47 (2015), pp. 347-380, https://doi.org/10.1137/130941432. · Zbl 1320.35064
[17] C. Dellacherie and P. A. Meyer, Probabilities and Potential, North-Holland Math. Stud. 29, North-Holland, Amsterdam, New York, 1978. · Zbl 0494.60001
[18] Q. Du, C. Liu, R. Ryham, and X. Wang, A phase field formulation of the Willmore problem, Nonlinearity, 18 (2005), pp. 1249-1267. · Zbl 1125.35366
[19] Q. Du, C. Liu, and X. Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, J. Comput. Phys., 198 (2004), pp. 450-468. · Zbl 1116.74384
[20] N. Duan, Y. Cui, and X. Zhao, A sixth-order phase-field equation with degenerate mobility, Bull. Malays. Math. Sci. Soc., 42 (2019), pp. 79-103. · Zbl 1404.35238
[21] W. Feng, Z. Guan, J. S. Lowengrub, C. Wang, S. Wise, and Y. Chen, A uniquely solvable, energy stable numerical scheme for the functionalized Cahn-Hilliard equation and its convergence analysis, J. Sci. Comput., 76 (2018), pp. 1938-1967. · Zbl 1398.65208
[22] A. Giorgini, M. Grasselli, and A. Miranville, The Cahn-Hilliard-Oono equation with singular potential, Math. Models Methods Appl. Sci., 27 (2017), pp. 2485-2510. · Zbl 1386.35023
[23] G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphiphilic systems, Phys. Rev. Lett., 65 (1990), pp. 1116-1119.
[24] M. Grasselli and H. Wu, Well-posedness and long-time behavior for the modified phase-field crystal equation, Math. Models Methods Appl. Sci., 24 (2014), pp. 2743-2783. · Zbl 1304.35690
[25] M. Grasselli and H. Wu, Robust exponential attractors for the modified phase-field crystal equation, Discrete Contin. Dyn. Syst., 35 (2015), pp. 2539-2564. · Zbl 1332.35360
[26] R. Guo, Y. Xu, and Z. Xu, Local discontinuous Galerkin methods for the functionalized Cahn-Hilliard equation, J. Sci. Comput., 63 (2015), pp. 913-937. · Zbl 1319.65096
[27] M. D. Korzec, P. Nayar, and P. Rybka, Global weak solutions to a sixth order Cahn-Hilliard-type equation, SIAM J. Math. Anal., 44 (2012), pp. 3369-3387, https://doi.org/10.1137/100817590. · Zbl 1270.35252
[28] M. D. Korzec and P. Rybka, On a higher order convective Cahn-Hilliard-type equation, SIAM J. Appl. Math., 72 (2012), pp. 1343-1360, https://doi.org/10.1137/110834123. · Zbl 1257.35109
[29] C. Liu and X. Zhang, Global weak solutions to a higher order nonlinear degenerate parabolic equation, J. Math. Anal. Appl., 462 (2018), pp. 1435-1463. · Zbl 1516.35187
[30] M. Marcus and V. J. Mizel, Continuity of certain Nemitsky operators on Sobolev spaces and the chain rule, J. Analyse Math., 28 (1975), pp. 303-334. · Zbl 0328.46028
[31] A. Miranville, Asymptotic behavior of a sixth-order Cahn-Hilliard system, Cent. Eur. J. Math., 12 (2014), pp. 141-154. · Zbl 1286.35047
[32] A. Miranville, Sixth-order Cahn-Hilliard equations with singular nonlinear terms, Appl. Anal., 94 (2015), pp. 2133-2146. · Zbl 1332.35149
[33] A. Miranville, On the phase-field-crystal model with logarithmic nonlinear terms, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 110 (2016), pp. 145-157. · Zbl 1336.35086
[34] A. Miranville, The Cahn-Hilliard Equation: Recent Advances and Applications, CBMS-NSF Regional Conf. Ser. in Appl. Math.95, SIAM, Philadelphia, 2019, https://doi.org/10.1137/1.9781611975925. · Zbl 1446.35001
[35] A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), pp. 545-582. · Zbl 1050.35113
[36] T. Nagai, T. Senba, and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), pp. 411-433. · Zbl 0901.35104
[37] V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators, Commun. Pure Appl. Anal., 6 (2007), pp. 481-486. · Zbl 1152.47046
[38] I. Pawł ow and W. Zaja̧czkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures, Comm. Pure Appl. Anal., 10 (2011), pp. 1823-1847. · Zbl 1229.35108
[39] I. Pawł ow and W. Zaja̧czkowski, On a class of sixth order viscous Cahn-Hilliard type equations, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), pp. 517-546. · Zbl 1276.35100
[40] K. Promislow and B. Wetton, PEM fuel cells: A mathematical overview, SIAM J. Appl. Math., 70 (2009), pp. 369-409, https://doi.org/10.1137/080720802. · Zbl 1189.35002
[41] K. Promislow and Q. Wu, Existence, bifurcation, and geometric evolution of quasi-bilayers in the multicomponent functionalized Cahn-Hilliard equation, J. Math. Biol., 75 (2017), pp. 443-489. · Zbl 1381.92019
[42] K. Promislow and H. Zhang, Critical points of functionalized Lagrangians, Discrete Cont. Dyn. Syst., 33 (2013), pp. 1-16. · Zbl 1262.49017
[43] E. Rocca and G. Schimperna, Universal attractor for some singular phase transition systems, Phys. D, 192 (2004), pp. 279-307. · Zbl 1062.82015
[44] G. Schimperna and I. Pawł ow, A Cahn-Hilliard equation with singular diffusion, J. Differential Equations, 254 (2013), pp. 779-803. · Zbl 1272.35115
[45] G. Schimperna and I. Pawł ow, On a class of Cahn-Hilliard models with nonlinear diffusion, SIAM J. Math. Anal., 45 (2013), pp. 31-63, https://doi.org/10.1137/110835608. · Zbl 1276.35101
[46] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. · Zbl 0871.35001
[47] S. Torabi, J. Lowengrub, A. Voigt, and S. Wise, A new phase-field model for strongly anisotropic systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), pp. 1337-1359. · Zbl 1186.80014
[48] C. Wang and S. Wise, Global smooth solutions of the three-dimensional modified phase field crystal equation, Methods Appl. Anal., 17 (2010), pp. 191-211. · Zbl 1217.35040
[49] H. Wu and S. Zheng, Global attractor for the 1-D thin film equation, Asymptotic Anal., 51 (2007), pp. 101-111. · Zbl 1223.35081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.