×

Microscale mechanical modeling of deformable geomaterials with dynamic contacts based on the numerical manifold method. (English) Zbl 1452.86019

Summary: Micromechanical modeling of geomaterials is challenging because of the complex geometry of discontinuities and potentially large number of deformable material bodies that contact each other dynamically. In this study, we have developed a numerical approach for micromechanical analysis of deformable geomaterials with dynamic contacts. In our approach, we detect contacts among multiple blocks with arbitrary shapes, enforce different contact constraints for three different contact states of separated, bonded, and sliding, and iterate within each time step to ensure convergence of contact states. With these features, we are able to simulate the dynamic contact evolution at the microscale for realistic geomaterials having arbitrary shapes of grains and interfaces. We demonstrate the capability with several examples, including a rough fracture with different geometric surface asperity characteristics, settling of clay aggregates, compaction of a loosely packed sand, and failure of an intact marble sample. With our model, we are able to accurately analyze (1) large displacements and/or deformation, (2) the process of high stress accumulated at contact areas, (3) the failure of a mineral cemented rock samples under high stress, and (4) post-failure fragmentation. The analysis highlights the importance of accurately capturing (1) the sequential evolution of geomaterials responding to stress as motion, deformation, and high stress; (2) large geometric features outside the norms (such as large asperities and sharp corners) as such features can dominate the micromechanical behavior; and (3) different mechanical behavior between loosely packed and tightly packed granular systems.

MSC:

86A60 Geological problems
74L05 Geophysical solid mechanics
74M25 Micromechanics of solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Al-Yaarubi, AH; Pain, CC; Grattoni, CA; Zimmerman, RW, Navier-stokes simulations of fluid flow through a rough fracture. Dynamics of fluids and transport in fractured rock, Geophys. Monograph Ser., 162, 55-64 (2005)
[2] Andrade, JE; Lim, KW; Avila, CF; Vlahinic, I., Granular element method for computational particle mechanics, Comput. Methods Appl. Mech. Eng., 241, 262-274 (2012) · Zbl 1353.76060 · doi:10.1016/j.cma.2012.06.012
[3] Bond, AE; Bruský, I.; Cao, T.; Chittenden, N.; Fedors, R.; Feng, XT; Gwo, JP; Kolditz, O.; Lang, P.; McDermott, C.; Neretnieks, I.; Pan, PZ; Šembera, J.; Shao, H.; Watanabe, N.; Yasuhara, H.; Zheng, H., A synthesis of approaches for modelling coupled thermal-hydraulic-mechanical-chemical processes in a single novaculite fracture experiment, Environ. Earth Sci., 76, 12 (2017) · doi:10.1007/s12665-016-6326-6
[4] Chen, G.; Ohnishi, Y.; Ito, T., Development of high-order manifold method, Int. J. Numer. Methods Eng., 43, 685-712 (1998) · Zbl 0945.74078 · doi:10.1002/(SICI)1097-0207(19981030)43:4<685::AID-NME442>3.0.CO;2-7
[5] Cundall, PA, Formulation of a three-dimensional distinct element model—part I. a scheme to detect and represent contacts in a system composed of many polyhedral blocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 25, 107-116 (1988) · doi:10.1016/0148-9062(88)92293-0
[6] Fan, L.; Yi, X.; Ma, G., Numerical manifold method (NMM) simulation of stress wave propagation through fractured rock mass, Int. J. Comput. Methods, 5, 2, 1350022 (2013)
[7] He, L.; An, X.; Ma, G.; Zhao, Z., Development of three-dimensional numerical manifold method for jointed rock slope stability analysis, Int. J. Rock Mech. Min. Sci., 64, 22-35 (2013) · doi:10.1016/j.ijrmms.2013.08.015
[8] Houlsby, GT, Potential particles: a method for modelling non-circular particles in dem, Comput. Geotech., 36, 6, 953-959 (2009) · doi:10.1016/j.compgeo.2009.03.001
[9] Hu, M., Rutqvist, J.: Numerical manifold method modeling of coupled processes in fractured geological media at multiple scales. J. Rock Mech. Geotech. Eng. (2020a). 10.1016/j.jrmge.2020.03.002
[10] Hu, M., Rutqvist, J.: Finite volume modeling of coupled thermo-hydro-mechanical processes with application to brine migration in salt. Comput. Geosci. (2020b). 10.1007/s10596-020-09943-8 · Zbl 1452.76118
[11] Hu, M.; Wang, Y.; Rutqvist, J., Development of a discontinuous approach for modeling fluid flow in heterogeneous media using the numerical manifold method, Int. J. Numer. Anal. Methods Geomech., 39, 1932-1952 (2015) · doi:10.1002/nag.2390
[12] Hu, M.; Wang, Y.; Rutqvist, J., An effective approach for modeling water flow in heterogeneous media using Numerical Manifold Method, Int. J. Numer. Methods Fluids, 77, 459-476 (2015) · doi:10.1002/fld.3986
[13] Hu, M.; Rutqvist, J.; Wang, Y., A practical model for flow in discrete-fracture porous media by using the numerical manifold method, Adv. Water Resour., 97, 38-51 (2016) · doi:10.1016/j.advwatres.2016.09.001
[14] Hu, M.; Wang, Y.; Rutqvist, J., Fully coupled hydro-mechanical numerical manifold modeling of porous rock with dominant fractures, Acta Geotech., 12, 2, 231-252 (2017) · doi:10.1007/s11440-016-0495-z
[15] Hu, M.; Rutqvist, J.; Wang, Y., A numerical manifold method model for analyzing fully coupled hydro-mechanical processes in porous rock masses with discrete fractures, Adv. Water Resour., 102, 111-126 (2017) · doi:10.1016/j.advwatres.2017.02.007
[16] Lai, J.; Wang, G.; Fan, Z.; Chen, J.; Qin, Z.; Xiao, C.; Wang, S.; Fan, X., Three-dimensional quantitative fracture analysis of tight gas sandstones using industrial computed tomography, Sci. Rep., 7, 1825 (2017) · doi:10.1038/s41598-017-01996-7
[17] Ma, G.; An, X.; He, L., The numerical manifold method: a review, Int. J. Comput. Methods, 7, 1, 1-32 (2010) · Zbl 1267.74129 · doi:10.1142/S0219876210002040
[18] Neuville, A.; Flekkøy, EG; Toussaint, R., Influence of asperities on fluid and thermal flow in a fracture: a coupled Lattice Boltzmann study, J. Geophys. Res. Solid Earth, 118, 3394-3407 (2013) · doi:10.1002/jgrb.50256
[19] Ning, Y.; An, X.; Ma, G., Footwall slope stability analysis with the numerical manifold method, Int. J. Rock Mech. Min. Sci., 48, 964-975 (2011) · doi:10.1016/j.ijrmms.2011.06.011
[20] Rodríguez, P.; Arab, PB; Celestino, TB, Characterization of rock cracking patterns in diametral compression tests by acoustic emission and petrographic analysis, Int. J. Rock Mech. Min. Sci., 83, 73-85 (2016) · doi:10.1016/j.ijrmms.2015.12.017
[21] Rutqvist, J., The geomechanics of CO2 storage in deep sedimentary formations, Int. J. Geotech. Geol. Eng., 30, 525-551 (2012) · doi:10.1007/s10706-011-9491-0
[22] Rutqvist, J.; Moridis, G., Numerical studies on the geomechanical stability of hydrate-bearing sediments, SPE J., 14, 267-282 (2009) · doi:10.2118/126129-PA
[23] Rutqvist, J.; Zheng, L.; Chen, F.; Liu, H-H; Birkholzer, J., Modeling of coupled thermo-hydro-mechanical processes with links to geochemistry associated with bentonite-backfilled repository tunnels in clay formations, Rock Mech. Rock. Eng., 47, 167-186 (2014) · doi:10.1007/s00603-013-0375-x
[24] Sauer, R.; Lorenzis, LD, An unbiased computational contact formulation for 3d friction, Int. J. Numer. Methods Eng., 101, 251-280 (2015) · Zbl 1352.74211 · doi:10.1002/nme.4794
[25] Shi G.: Manifold method of material analysis. Transaction of the 9th army conference on applied mathematics and computing, U.S. Army Research Office (1992)
[26] Shi G.: Simplex integration for manifold method, FEM and DDA. Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media. TSI press. 205-262 (1996)
[27] Shi, G., Contact theory, SCIENCE CHINA Technol. Sci., 58, 1450-1496 (2015) · doi:10.1007/s11431-015-5814-3
[28] Steefel, CI, Reactive transport at the crossroads, Rev. Mineral. Geochem., 85, 1-26 (2019) · doi:10.2138/rmg.2019.85.1
[29] Underwood, TR; Bourg, I., Large-scale molecular dynamics simulation of the dehydration of a suspension of smectite clay nanoparticles, J. Phys. Chem. C, 124, 3702-3714 (2020) · doi:10.1021/acs.jpcc.9b11197
[30] Vanorio, T.; Prasad, M.; Nur, A., Elastic properties of dry clay mineral aggregates, suspensions and sandstones, Geophys. J. Int., 155, 319-326 (2003) · doi:10.1046/j.1365-246X.2003.02046.x
[31] Voltolini, M.; Ajo-Franklin, J., Evolution of propped fractures in shales: the microscale controlling factors as revealed by in situ x-ray microtomography, J. Pet. Sci. Eng., 188, 106861 (2020) · doi:10.1016/j.petrol.2019.106861
[32] Wang, Y.; Hu, M.; Zhou, Q.; Rutqvist, J., A new second-order numerical manifold method model with an efficient scheme for analyzing free surface flow with inner drains, Appl. Math. Model., 40, 1427-1445 (2016) · Zbl 1446.76052 · doi:10.1016/j.apm.2015.08.002
[33] Worden, RH; Armitage, PJ; Butcher, AR; Churchill, JM; Csoma, AE; Hollis, C.; Lander, RH; Omma, JE, Reservoir quality of clastic and carbonate rocks: analysis, modelling and prediction, Geol. Soc. Lond., Spec. Publ., 435, 1-31 (2018) · doi:10.1144/SP435.21
[34] Wu, Z.; Fan, L.; Liu, Q.; Ma, G., Micro-mechanical modeling of the macro-mechanical response and fracture behavior of rock using the numerical manifold method, Eng. Geol., 225, 49-60 (2017) · doi:10.1016/j.enggeo.2016.08.018
[35] Zheng, H.; Wang, F., The numerical manifold method for exterior problems, Comput. Methods Appl. Mech. Eng., 364, 112968 (2020) · Zbl 1442.65420 · doi:10.1016/j.cma.2020.112968
[36] Zheng, H.; Xu, D., New strategies for some issues of numerical manifold method in simulation of crack propagation, Int. J. Numer. Meth. Engng, 97, 986-1010 (2014) · Zbl 1352.74311 · doi:10.1002/nme.4620
[37] Zheng, H.; Zhang, P.; Du, X., Dual form of discontinuous deformation analysis, Comput. Methods Appl. Mech. Eng., 305, 196-216 (2016) · Zbl 1425.74507 · doi:10.1016/j.cma.2016.03.008
[38] Zhuang, L., Jung, S.G., Diaz, M., Kim, K.Y., Hofmann, H., Min, K.B., Zang, A., Stephansson, O., Zimmerman, G., Yoon, J.S.: Laboratory true triaxial hydraulic fracturing of granite under six fluid injection schemes and grain-scale fracture observations. Rock Mech. Rock. Eng. (2020). 10.1007/s00603-020-02170-8
[39] Zou, L.; Jing, L.; Cvetkovic, V., Roughness decomposition and nonlinear fluid flow in a single rock fracture, Int. J. Rock Mech. Min. Sci., 75, 102-118 (2015) · doi:10.1016/j.ijrmms.2015.01.016
[40] Puso, M.A., Laursen, T.A.: A mortar segment-to-segment contact method for large deformation solid mechanics. Comput. Methods Appl. Mech. Engrg. 193, 601-629 (2004) · Zbl 1060.74636
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.