×

Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons. (English) Zbl 1270.86010

Summary: The contributions of dayside and nightside gyroresonance of chorus waves to electron radiation belt evolution at \(L=6.6\) are detailedly differentiated via fully solving the two-dimensional Fokker-Plank equation. The numerical results show that the chorus waves at different regions play significantly different roles. The dayside chorus waves can cause obvious loss of energetic electrons at lower pitch angles and weak energization at larger pitch angles. The nightside chorus waves can yield significant energization at larger pitch angles, but cannot efficiently resonate with the energetic electrons at lower pitch angle. Due to the numerical difficulty in fully solving Fokker-Planck equation, the cross diffusion terms are often ignored in the previous work. Here the effect of cross diffusion at different regions is further analyzed. On the dayside, ignoring cross diffusion overestimates the electron phase space density by several orders of magnitude at lower pitch angles, and consequently the dayside chorus waves are incorrectly regarded as an effective energization mechanism. On the nightside, ignoring cross diffusion overestimates the electron phase space density (PSD) by about one order of magnitude at larger pitch angles. These numerical results suggest that cross diffusion terms can significantly affect gyroresonance of chorus waves on both the dayside and nightside, which should be included in the future radiation belt models.

MSC:

86A25 Geo-electricity and geomagnetism
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Liu K, Xia L D, Chen Y, et al. Statistical study on the relationship between halo CME and coronal dimming. Sci China Tech Sci, 2010, 53: 2020–2034 · doi:10.1007/s11431-009-3229-8
[2] Zhao H, Zong Q G, Wei Y, et al. Influence of solar wind dynamic pressure on geomagnetic Dst index during various magnetic storm. Sci China Tech Sci, 2011, 54: 1445–1454 · Zbl 1236.86013 · doi:10.1007/s11431-011-4319-y
[3] Cheng Z W, Shi J K, Zhang T L, et al. The relations between density of FACs in the plasma sheet boundary layers and K p index. Sci China Tech Sci, 2011, 54: 2987–2992 · doi:10.1007/s11431-011-4545-3
[4] Sun W J, Shi Q Q, Fu S Y, et al. Statistical research on the motion properties of the magnetotail current sheet: Cluster observations. Sci China Tech Sci, 2010, 53: 1732–1738 · doi:10.1007/s11431-010-3153-y
[5] Chu X N, Pu Z Y, Cao X, et al. THEMIS observations of two substorms on February 26, 2008. Sci China Tech Sci, 2010, 53: 1328–1338 · doi:10.1007/s11431-009-0399-3
[6] Blake J B, Kolasinski W A, Fillius R W, et al. Injection of electrons and protons with energies of tens of MeV into L < 3 on 24 March 1991. Geophys Res Lett, 1992, 19: 821–824 · doi:10.1029/92GL00624
[7] Reeves G D, McAdams K L, Friedel R H W, et al. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys Res Lett, 2003, 30: 1529 · doi:10.1029/2002GL016513
[8] Bortnik J, Thorne R M, O’Brien T P, et al. Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event. J Geophys Res, 2006, 111: A12216 · doi:10.1029/2006JA011802
[9] Zong Q G, Zhou X Z, Wang Y F, et al. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res, 2009, 114: A10204 · doi:10.1029/2009JA014393
[10] Su Z P, Xiao F L, Zheng H N, et al. CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event. Geophys Res Lett, 2011, 38: L06106
[11] Yuan C J, Zong Q G. Dynamic variations of the outer radiation belt during magnetic storms for 1.5–6.0 MeV electrons. Sci China Tech Sci, 2011, 54: 431–440 · doi:10.1007/s11431-010-4269-9
[12] Li L, Feng Y Y. Energetic electron flux distribution model in the inner and middle magnetosphere. Sci China Tech Sci, 2011, 54: 441–446 · Zbl 05912996 · doi:10.1007/s11431-010-4234-7
[13] He Z G, Xiao F L, Zong Q G, et al. Multi-satellite observations on the storm-time enhancements of energetic outer zone electron fluxes driven by chorus waves. Sci China Tech Sci, 2011, 54: 2209–2216 · doi:10.1007/s11431-011-4445-6
[14] Wang C R, Zong Q G, Wang Y F. Propagation of interplanetary shock excited ultra low frequency (ULF) waves in magnetosphere-ionosphere-atmosphere-Multi-spacecraft ”Cluster” and ground-based magnetometer observations. Sci China Tech Sci, 2010, 53: 2528–2534 · doi:10.1007/s11431-010-4064-7
[15] Gao H, Xu J Y, Chen G M, et al. Global distributions of OH and O2 (1.27 m) nightglow emissions observed by TIMED satellite. Sci China Tech Sci, 2011, 54: 447–456 · doi:10.1007/s11431-010-4236-5
[16] Xu T, Wu Z S, Hu Y L, et al. Statistical analysis and model of spread F occurrence in China. Sci China Tech Sci, 2011, 54: 1725–1731
[17] Dessler A J, Karplus R. Some effects of diamagnetic ring currents on van Allen radiation. J Geophys Res, 1961, 66: 2289–2295 · doi:10.1029/JZ066i008p02289
[18] McIlwain C E. Ring current effects on trapped particles. J Geophys Res, 1966, 71: 3623–3628 · doi:10.1029/JZ071i015p03623
[19] Kim H J, Chan A A. Fully adiabatic changes in storm time relativistic electron fluxes. J Geophys Res, 1997, 102: 22107–22116 · doi:10.1029/97JA01814
[20] Su Z P, Xiao F L, Zheng H N, et al. Combined radial diffusion and adiabatic transport of radiation belt electrons with arbitrary pitch-angles. J Geophys Res, 2011, 115: A10249 · doi:10.1029/2010JA015903
[21] Su Z P, Xiao F L, Zheng H N, et al. Radiation belt electron dynamics driven by adiabatic transport, radial diffusion, and wave-particle interactions. J Geophys Res, 2011, 116: A04205
[22] Schulz M, Eviatar A. Diffusion of equatorial particles in the outer radiation zone. J Geophys Res, 1969, 74: 2182–2192 · doi:10.1029/JA074i009p02182
[23] Lyons L R, Thorne R N. Equilibrium structure of radiation belt electrons. J Geophys Res, 1973, 78: 2142–2149 · doi:10.1029/JA078i013p02142
[24] Brautigam D H, Albert J M. Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm. J Geophys Res, 2000, 105: 291–310 · doi:10.1029/1999JA900344
[25] Horne R B, Thorne R M. Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys Res Lett, 1998, 25: 3011–3014 · doi:10.1029/98GL01002
[26] Summers D, Thorne R M, Xiao F L. Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J Geophys Res, 1998, 103: 20487–20500 · doi:10.1029/98JA01740
[27] Albert J M. Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma. J Geophys Res, 2003, 108: A81249
[28] Su Z P, Zheng H N. Simulation of resonant interaction between energetic electrons and whistler-mode chorus in the outer radiation belt. Chin Phys Lett, 2008, 25: 4493–4496 · doi:10.1088/0256-307X/25/12/087
[29] Su Z P, Zheng H N. Resonant scattering of relativistic outer zone electrons by plasmaspheric plume electromagnetic ion cyclotron waves. Chin Phys Lett, 2009, 26: 129401 · doi:10.1088/0256-307X/26/12/129401
[30] Xiao F L, Zong Q G, Su Z P, et al. Latest progress on interactions between VLF/ELF waves and energetic electrons in the inner magnetosphere. Sci China Earth Sci, 2010, 53: 317–326 · doi:10.1007/s11430-010-0007-1
[31] Thorne R M. Radiation belt dynamics: The importance of wave-particle interactions. Geophys Res Lett, 2010, 37: L22107
[32] Zheng H N, Su Z P, Xiong M. Pitch angle distribution evolution of energetic electrons by whistler-mode chorus. Chin Phys Lett, 2008, 25: 3515–3518 · doi:10.1088/0256-307X/25/9/113
[33] Su Z P, Zheng H N, Xiong M. Dynamic evolution of outer radiation belt electrons due to whistler-mode chorus. Chin Phys Lett, 2009, 26: 039401 · doi:10.1088/0256-307X/26/3/039401
[34] Li W, Shprits Y Y, Thorne R M. Dynamical evolution of energetic electrons due to wave-particle interactions during storms. J Geophys Res, 2007, 112: A10220 · doi:10.1029/2007JA012368
[35] Summers D, Ni B B, Meredith N P. Timescales for radiation belt electron acceleration and loss due to resonant waveparticle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. J Geophys Res, 2007, 112: A04206
[36] Xiao F L, Su Z P, Zheng H N. Modeling of outer radiation belt electrons by multidimensional diffusion process. J Geophys Res, 2009, 114: A03201
[37] Su Z P, Zheng H N, Chen L X, et al. Numerical simulations of storm-time outer radiation belt dynamics by waveparticle interactions including cross diffusion. J Atmos Sol Phys, 73: 95–105
[38] Su Z P, Zheng H N, Wang S. Dynamic evolution of energetic outer zone electrons due to whistler mode chorus based on a realistic density model. J Geophys Res, 2009, 114: A07201
[39] He Y H, Chen L X, Xiao F L, et al. Interaction between electromagnetic waves and energetic particles by a realistic density model. Sci China Tech Sci, 2010, 53: 2552–2557 · Zbl 1203.86018 · doi:10.1007/s11431-010-4072-7
[40] Xiao F L, Chen L X, He Y H, et al. Dynamic evolution of outer radiation belt electrons driven by superluminous R-X mode waves. Sci China Tech Sci, 2010, 53: 2734–2738 · Zbl 1269.78009 · doi:10.1007/s11431-010-4071-8
[41] Tsurutani B T, Smith E J. Two types of magnetospheric ELF chorus and their substorm dependences. J Geophys Res, 1977, 82: 5112–5128 · doi:10.1029/JA082i032p05112
[42] Burtis W J, Helliwell R A. Magnetospheric chorus-Amplitude and growth rate. J Geophys Res, 1975, 80: 3265–3270 · doi:10.1029/JA080i022p03265
[43] Meredith N P, Horne R B, Anderson R R. Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J Geophys Res, 2001, 106: 13165–13178 · doi:10.1029/2000JA900156
[44] Meredith N P, Horne R B, Thorne R M, et al. Favored regions for chorus driven electron acceleration to relativistic energies in the earth’s outer radiation belt. Geophys Res Lett, 2003, 30: 1871 · doi:10.1029/2003GL017698
[45] Albert J M, Young S. Multidimensional quasi-linear diffusion of radiation belt electrons. Geophys Res Lett, 2005, 32: L14110
[46] Horne R B, Thorne R M, Glauert S A, et al. Timescale for radiation belt electron acceleration by whistler mode chorus waves. J Geophys Res, 2005, 110: A03225
[47] Varotsou A, Boscher D, Bourdarie S, et al. Simulation of the outer radiation belt electrons near geosynchronous orbit including both radial diffusion and resonant interaction with whistler-mode chorus waves. Geophys Res Lett, 2005, 32: L19106 · doi:10.1029/2005GL023282
[48] Varotsou A, Boscher D, Bourdarie S, et al. Three-dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions. J Geophys Res, 2008, 113: A12212 · doi:10.1029/2007JA012862
[49] Kozyra J U, Rasmussen C E, Miller R H, et al. Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss. 1: Diffusion coefficients and timescales. J Geophys Res, 1994, 99: 4069–4084 · doi:10.1029/93JA01532
[50] Su Z P, Zheng H N, Wang S. Evolution of electron pitch angle distribution due to interactions with whistler mode chorus following substorm injections. J Geophys Res, 2009, 114: A08202
[51] Qi Q W, Zhang A, Jiang L L, et al. Optimization of mathematical models for thematic maps. Sci China Tech Sci, 2010, 53(Suppl. I): 15–24 · doi:10.1007/s11431-010-3235-x
[52] Su Z P, Xiao F L, Zheng H N, et al. STEERB: A three-dimensional code for storm-time evolution of electron radiation belt. J Geophys Res, 2010, 115: A09208
[53] Qiao Y, Liu H P, Bai M, et al. Extracting impervious surfaces from multi-source satellite imagery based on unified conceptual model by decision tree algorithm. Sci China Tech Sci, 2010, 53(Suppl. I): 68–74 · doi:10.1007/s11431-010-3207-1
[54] Su Z P, Zheng H N, Wang S. A parametric study on the diffuse auroral precipitation by resonant interaction with whistler mode chorus. J Geophys Res, 2010, 115: A05219
[55] Xia Y B, Pang P Y, Weng J N. Distributed GIS oriented generalized image pyramid and its practice. Sci China Tech Sci, 2010, 53(Suppl. I): 99–104 · Zbl 05912969 · doi:10.1007/s11431-010-3209-z
[56] Su Z P, Zheng H N, Wang S. Three-dimensional simulation of energetic outer zone electron dynamics due to waveparticle interaction and azimuthal advection. J Geophys Res, 2010, 115: A06203
[57] Zhang X D, Wang W B, Wang D F, et al. A fusion algorithm for remote sensing images based on nonsubsampled pyramids and bidimensional empirical decomposition. Sci China Tech Sci, 2010, 53(Suppl. I): 196–204 · Zbl 05912973 · doi:10.1007/s11431-010-3236-9
[58] Zhou Q M, Sun B. Analysis of spatio-temporal pattern and driving force of land cover change using multi-temporal remote sensing images. Sci China Tech Sci, 2010, 53(Suppl. I): 111–119 · doi:10.1007/s11431-010-3196-0
[59] Xiao F L, Su Z P, Zheng H N, et al. Three-dimensional simulations of outer radiation belt electron dynamics including cross-diffusion terms. J Geophys Res, 2010, 115: A05216
[60] Luo A, Wang Y D, Chen S H. A hybrid matching method for geospatial services in a composition-oriented environment. Sci China Tech Sci, 2010, 53(Suppl. I): 213–220 · doi:10.1007/s11431-010-3238-7
[61] Xiao F L, Su Z P, Chen L X, et al. A parametric study on outer radiation belt electron evolution by superluminous R-X mode waves. J Geophys Res, 2010, 115: A10217 · doi:10.1029/2010JA015374
[62] Chen Z, Shen L, Zhao Y Q, et al. Parallel algorithm for real-time contouring from grid DEM on modern GPUs. Sci China Tech Sci, 2010, 53(Suppl. I): 33–37 · doi:10.1007/s11431-010-3210-6
[63] Xiong B, Zhang X J, Jiang W S. Semi-supervised classification based on Gaussian mixture model for remote imagery. Sci China Tech Sci, 2010, 53(Suppl. I): 85–90 · Zbl 1215.68264 · doi:10.1007/s11431-010-3211-5
[64] Xiao F L, Chen L X, He Y H, et al. Modeling for precipitation loss of ring current protons by electromagnetic ion cyclotron waves. J Atoms Sol-Terres Phys, 2011, 73: 88–94 · doi:10.1016/j.jastp.2009.12.012
[65] Wu L, Yan M L, Gao Y, et al. A distributed spatial computing prototype system in grid environment. Sci China Tech Sci, 2010, 53(Suppl. I): 25–32 · doi:10.1007/s11431-010-3198-y
[66] Zhang G, Li Y, Li Z J. A new approach toward object-based change detection. Sci China Tech Sci, 2010, 53(Suppl. I): 105–110 · Zbl 1215.68265 · doi:10.1007/s11431-010-3215-1
[67] Fok M C, Glocer A, Zheng Q, et al. Recent developments in the radiation belt environment model. J Atmos Sol-Terr Phys, 2010, 73: 1435–1443 · doi:10.1016/j.jastp.2010.09.033
[68] Gong J Y, Xiang L G, Chen J, et al. Multi-source geospatial information integration and sharing in virtual globes. Sci China Tech Sci, 2010, 53(Suppl. I): 1–6 · doi:10.1007/s11431-010-3216-0
[69] Sun K M, Sui H G, Li D R, et al. A new relative radiometric consistency processing method for change detection based on wavelet transform and a low-pass filter. Sci China Tech Sci, 2010, 53(Suppl. I): 7–14 · Zbl 1218.78091 · doi:10.1007/s11431-010-3197-z
[70] Dong W H, Tian Y, Zhang Y. Automatic generalization of metro maps based on dynamic segmentation. Sci China Tech Sci, 2010, 53(Suppl. I): 158–165 · Zbl 05912968 · doi:10.1007/s11431-010-3204-4
[71] Thorne R M, Ni B, Tao X, et al. Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature, 2010, 467: 943–946 · doi:10.1038/nature09467
[72] Tao X, Thorne R M, Li W, et al. Evolution of electron pitch angle distributions following injection from the plasma sheet. J Geophys Res, 2011, 116: A04229
[73] Zheng Q, Fok M, Albert J, et al. Effects of energy and pitch angle mixed diffusion on radiation belt electrons. J Atmos Sol-Terr Phys, 2011, 73: 785–795 · doi:10.1016/j.jastp.2011.01.014
[74] Vasyliunas V M. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J Geophys Res, 1968, 73: 2839–2884 · doi:10.1029/JA073i009p02839
[75] Maksimovic M, Pierrard V, Lemaire J F. A kinetic model of the solar wind with Kappa distribution functions in the corona. Astron Astrophys, 1997, 324: 725–734.
[76] Maksimovic M, Pierrard V, Riley P. Ulysses electron distributions fitted with Kappa functions. Geophys Res Lett, 1997, 24: 1151–1154 · doi:10.1029/97GL00992
[77] Vinas A F, Mace R L, Benson R F. Dispersion characteristics for plasma resonances of Maxwellian and Kappa distribution plasmas and their comparisons to the IMAGE/RPI observations. J Geophys Res, 2005, 110: A06202
[78] Xiao F L. Modelling energetic particles by a relativistic kappa-loss-cone distribution function in plasmas. Plasma Phys Control Fusion, 2006, 48: 203–207 · doi:10.1088/0741-3335/48/2/003
[79] Xiao F L, Chen L X, Li J F. Energetic particles modeled by a generalized relativistic kappa-type distribution function in plasmas. Plasma Phys Control Fusion, 2008, 50: 105002 · doi:10.1088/0741-3335/50/10/105002
[80] Xiao F L, Shen C, Wang Y, et al. Energetic electron distributions fitted with a relativistic kappa-type function at geosynchronous orbit. J Geophys Res, 2008, 113: A05203
[81] Xiao F L, Zhou Q H, Li C, et al. Modeling solar energetic particle by a relativistic kappa-type distribution. Plasma Phys Control Fusion, 2008, 50: 062001 · doi:10.1088/0741-3335/50/6/062001
[82] Lu Q M, Shan L C, Shen C L, et al. Velocity distributions of superthermal electrons fitted with a power law function in the magnetosheath: Cluster observations. J Geophys Res, 2011, 116: A03224
[83] Xu P Z, Wu Y W, Huang X M, et al. Optimizing write operation on replica in data grid. Sci China Inf Sci, 2011, 54: 1–11 · Zbl 05909032 · doi:10.1007/s11432-010-4153-z
[84] Jiang H T, Zhu D M. A 14/11-approximation algorithm for sorting by short block-moves. Sci China Inf Sci, 2011, 54: 279–292 · Zbl 1214.68464 · doi:10.1007/s11432-010-4131-5
[85] He P, Kang L S, Johnson C G, et al. Hoare logic-based genetic programming. Sci China Inf Sci, 2011, 54: 623–637 · Zbl 1219.68144 · doi:10.1007/s11432-011-4200-4
[86] Cao X L, Mo Z Y, Liu X, et al. Parallel implementation of fast multipole method based on JASMIN. Sci China Inf Sci, 2011, 54: 757–766 · doi:10.1007/s11432-011-4181-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.