×

Analysis of a single server retrial queue with server vacation and two waiting buffers based on ATM networks. (English) Zbl 1435.90046

Summary: This paper presents a discrete-time Geo/G/1 retrial queue with two waiting buffers to model an ATM network, in which the server begins a single vacation in cases where the system is empty at the instant of a service completion. New arriving customer who finds the server being on vacation can decide to either enter the retrial buffer with some probability \(p\) or leave the system with complementary probability \(1 - p\). But the new arriving customer can begin its service immediately if he finds the server idle and join the original buffer if he finds the server busy. We first carry out an extensive analysis of the model by using the supplementary variable method and the generating function approach, and give some performance measures, such as server’s state probabilities and mean queue lengths in the original buffer, retrial buffer, and in the system. Secondly, we give the generating function of the sojourn time of a customer in the system and prove that Little’s law still holds in our model. Sensitivity analysis and cost optimization are finally given for illustrative purposes.

MSC:

90B22 Queues and service in operations research
60K25 Queueing theory (aspects of probability theory)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bruneel, H.; Kim, B. G., Discrete-Time Models for Communication Systems Including ATM (1993), Boston, MA, USA: Kluwer Academic Publishers, Boston, MA, USA
[2] Takagi, H., Queueing Analysis: Discrete-Time Systems, 3 (1993), Amsterdam, Netherlands: North-Holland Elsevier, Amsterdam, Netherlands
[3] Ramaswami, V.; Wang, J. L., A hybrid analysis/simulation for ATM performance with application to quality-of-service of CBR traffic, Telecommunication Systems, 5, 1, 25-48 (1996) · doi:10.1007/bf02109725
[4] Walraevens, J.; Steyaert, B.; Bruneel, H., Performance analysis of a single-server ATM queue with a priority scheduling, Computers & Operations Research, 30, 12, 1807-1829 (2003) · Zbl 1047.90024 · doi:10.1016/s0305-0548(02)00108-9
[5] Falin, G. I.; Templeton, J. G. C., Retrial Queues (1997), London, UK: Chapman & Hall, London, UK · Zbl 0944.60005
[6] Artalejo, J. R.; Gomez-Corral, A., Retrial Queueing Systems (2008), Berlin, Germany: Springer, Berlin, Germany · Zbl 1161.60033
[7] Artalejo, J. R., A classified bibliography of research on retrial queues: progress in 1990-1999, Top, 7, 2, 187-211 (1999) · Zbl 1009.90001 · doi:10.1007/bf02564721
[8] Artalejo, J. R., Accessible bibliography on retrial queues: progress in 2000-2009, Mathematical and Computer Modelling, 51, 9-10, 1071-1081 (2010) · Zbl 1198.90011 · doi:10.1016/j.mcm.2009.12.011
[9] Gómez-Corral, A., A bibliographical guide to the analysis of retrial queues through matrix analytic techniques, Annals of Operations Research, 141, 1, 163-191 (2006) · Zbl 1100.60049 · doi:10.1007/s10479-006-5298-4
[10] Kim, J.; Kim, B., A survey of retrial queueing systems, Annals of Operations Research, 247, 1, 3-36 (2016) · Zbl 1357.60100 · doi:10.1007/s10479-015-2038-7
[11] Gao, S.; Wang, J.; Van Do, T., A repairable retrial queue under Bernoulli schedule and general retrial policy, Annals of Operations Research, 247, 1, 169-192 (2016) · Zbl 1358.90028 · doi:10.1007/s10479-015-1885-6
[12] Dimitriou, I., A two-class queueing system with constant retrial policy and general class dependent service times, European Journal of Operational Research, 270, 3, 1063-1073 (2018) · Zbl 1403.90236 · doi:10.1016/j.ejor.2018.03.002
[13] Dai, M.; Xia, J.; Xia, H.; Shen, H., Event-triggered passive synchronization for Markov jump neural networks subject to randomly occurring gain variations, Neurocomputing, 331, 403-411 (2019) · doi:10.1016/j.neucom.2018.11.011
[14] Shen, H.; Chen, M.; Wu, Z.-G.; Cao, J.; Park, J. H., Reliable event-triggered asynchronous extended passive control for semi-markov jump fuzzy systems and its application, IEEE Transactions on Fuzzy Systems (2019) · doi:10.1109/TFUZZ.2019.2921264
[15] Shen, H.; Wang, T.; Cao, J.; Lu, G.; Song, Y.; Huang, T., Nonfragile dissipative synchronization for Markovian memristive neural networks: a gain-scheduled control scheme, IEEE Transactions on Neural Networks and Learning Systems, 30, 6, 1841-1853 (2019) · doi:10.1109/tnnls.2018.2874035
[16] Zhang, Z. G.; Tian, N., Discrete-time Geo/G/1 queue with multiple adaptive vacations, Queueing Systems, 38, 4, 419-429 (2001) · Zbl 1079.90525 · doi:10.1023/a:1010947911863
[17] Gao, S.; Wang, J., Discrete-Time Geo/G/1 retrial queue with general retrial times, working vacations and vacation interruption, Quality Technology & Quantitative Management, 10, 4, 495-512 (2013) · doi:10.1080/16843703.2013.11673427
[18] Wang, J., Discrete-time Geo/G/1 retrial queues with general retrial time and Bernoulli vacation, Journal of Systems Science and Complexity, 25, 3, 504-513 (2012) · Zbl 1264.90065 · doi:10.1007/s11424-012-0254-7
[19] Wang, T.-Y.; Ke, J.-C.; Chang, F.-M., On the discrete-time Geo/G/1 queue with randomized vacations and at most J vacations, Applied Mathematical Modelling, 35, 5, 2297-2308 (2011) · Zbl 1217.90076 · doi:10.1016/j.apm.2010.11.021
[20] Yue, D.; Zhang, F., A discrete-time Geo/G/1 retrial queue with J-vacation policy and general retrial times, Journal of Systems Science and Complexity, 26, 4, 556-571 (2013) · Zbl 1292.90094 · doi:10.1007/s11424-013-1121-x
[21] Luo, C.; Tang, Y.; Chao, B.; Xiang, K., Performance analysis of a discrete-time Geo / G /1 queue with randomized vacations and at most J vacations, Applied Mathematical Modelling, 37, 9, 6489-6504 (2013) · Zbl 1426.90080 · doi:10.1016/j.apm.2013.01.033
[22] Wang, T.-Y., An unreliable Geo/G/1 queue with startup and closedown times under randomized finite vacations, Applied Mathematical Modelling, 39, 3-4, 1383-1399 (2015) · Zbl 1432.90038 · doi:10.1016/j.apm.2014.09.006
[23] Wang, T.-Y., A \(\left``\&\#x2329;V, p\right``\&\#x232a;\)-policy queueing system with startup/closedown times, Quality Technology & Quantitative Management, 12, 2, 169-194 (2015) · doi:10.1080/16843703.2015.11673375
[24] Krishna Kumar, B.; Rukmani, R.; Thangaraj, V., On multiserver feedback retrial queue with finite buffer, Applied Mathematical Modelling, 33, 4, 2062-2083 (2009) · Zbl 1205.90090 · doi:10.1016/j.apm.2008.05.011
[25] Do, T. V., An efficient computation algorithm for a multiserver feedback retrial queue with a large queueing capacity, Applied Mathematical Modelling, 34, 8, 2272-2278 (2010) · Zbl 1193.90073 · doi:10.1016/j.apm.2009.10.025
[26] Falin, G. I., The M/M/1 retrial queue with retrials due to server failures, Queueing Systems, 58, 3, 155-160 (2008) · Zbl 1140.60344 · doi:10.1007/s11134-008-9065-x
[27] Falin, G. I., An M/G/1 retrial queue with an unreliable server and general repair times, Performance Evaluation, 67, 7, 569-582 (2010) · doi:10.1016/j.peva.2010.01.007
[28] Sherman, N.; Kharoufeh, J., Optimal Bernoulli Routing in an unreliable M/G/1 retrial queue, Probability in the Engineering and Informational Sciences, 25, 1, 1-20 (2011) · Zbl 1209.90120 · doi:10.1017/s0269964810000215
[29] Li, H.; Yang, T., Geo/G/1 discrete time retrial queue with Bernoulli schedule, European Journal of Operational Research, 111, 3, 629-649 (1998) · Zbl 0948.90043 · doi:10.1016/s0377-2217(97)90357-x
[30] Tian, N.; Xu, X.; Ma, Z., Discrete-Time Queueing Theory (2008), Beijing, China: Science press, Beijing, China
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.