×

Modes of synchronisation around a near-wall oscillating cylinder in streamwise directions. (English) Zbl 1460.76167

Summary: Two-dimensional direct numerical simulations of a cylinder undergoing forced streamwise oscillations in steady approaching flow are conducted over ranges of oscillation amplitude, oscillation frequency and gap distance between the cylinder and the wall at a Reynolds number of 175. The flow characteristics are found to be strongly affected by the gap distance, compared to those observed around an isolated cylinder G. Tang et al. [ibid. 832, 146–169 (2017; Zbl 1419.76182)]. The synchronisation modes are mapped out in the parameter ranges. The existence of the plane wall leads to an increased chance of occurrence of high-order modes with the denominator being an odd number. Two new flow phenomena, namely the period doubling and transition to quasi-periodic states through cascade of period doubling within the primary synchronisation region, are observed. The interaction of the plane-wall boundary layer with vortices shed from the cylinder and the asymmetry of the flow through the gap and around the top side of the cylinder are identified as the primary physical mechanisms responsible for the observed behaviours. The influence of velocity gradient in the plane-wall boundary layer on the two new phenomena is quantified through a numerical test involving linear shear flow around an isolated cylinder. The period-doubling phenomenon occurs only when the velocity gradient is larger than a critical value. The results obtained through three-dimensional simulations suggest that the synchronisation modes identified through two-dimensional simulations are not significantly affected by the three-dimensionality of the flow over the parameter ranges covered in the present study.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76M10 Finite element methods applied to problems in fluid mechanics

Citations:

Zbl 1419.76182

Software:

Nektar++
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Al-Mdallal, Q. M., Lawrence, K. P. & Kocabiyik, S.2007Forced streamwise oscillations of a circular cylinder: locked-on modes and resulting fluid forces. J. Fluids Struct.23, 681-701.
[2] Bearman, P. W. & Zdravkovich, M. M.1978Flow around a circular cylinder near a plane boundary. J. Fluid Mech.89, 33-47.
[3] Blackburn, H. M. & Henderson, R. D.1999A study of two-dimensional flow past an oscillating cylinder. J. Fluid Mech.385, 255-286. · Zbl 0938.76022
[4] Bridge, C., Laver, K., Clukey, E. & Evans, T.2004Steel catenary riser touchdown point vertical interaction models. In Offshore Technology Conference. Offshore Technology Conference.
[5] Cantwell, C. D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De Grazia, D., Yakovlev, S., Lombard, J. E., Ekelschot, D.et al.2015Nektar + +: an open-source spectral/hp element framework. Comput. Phys. Commun.192, 205-219. · Zbl 1380.65465
[6] Farey, J.1816LXXIX. On a curious property of vulgar fractions. Phil. Mag.47 (217), 385-386.
[7] Griffin, O. M. & Ramberg, S. E.1976Vortex shedding from a cylinder vibrating in line with an incident uniform flow. J. Fluid Mech.75 (2), 257-271.
[8] Jiang, H., Cheng, L., Draper, S. & An, H.2017aTwo- and three-dimensional instabilities in the wake of a circular cylinder near a moving wall. J. Fluid Mech.812, 435-462. · Zbl 1383.76119
[9] Jiang, H., Cheng, L., Draper, S. & An, H.2017bThree-dimensional wake transition for a circular cylinder near a moving wall. J. Fluid Mech.818, 260-287. · Zbl 1383.76107
[10] Jiang, H., Cheng, L., Draper, S., An, H. & Tong, F.2016Three-dimensional direct numerical simulation of wake transitions of a circular cylinder. J. Fluid Mech.801, 353-391. · Zbl 1462.76059
[11] Hunt, J. C. R., Wray, A. & Moin, P.1988 Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88, pp. 193-208.
[12] Karniadakis, G. E., Israeli, M. & Orszag, S. A.1991High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys.97, 414-443. · Zbl 0738.76050
[13] Lei, C., Cheng, L., Armfield, S. W. & Kavanagh, K.2000bVortex shedding suppression for flow over a circular cylinder near a plane boundary. Ocean Engng10 (27), 1109-1127.
[14] Lei, C., Cheng, L. & Kavanagh, K.1999Re-examination of the effect of a plane boundary on force and vortex shedding of a circular cylinder. J. Wind Engng Ind. Aerodyn.80, 263-286.
[15] Lei, C., Cheng, L. & Kavanagh, K.2000aA finite difference solution of the shear flow over a circular cylinder. Ocean Engng27 (3), 271-290.
[16] Leontini, J. S., Lo Jacono, D. & Thompson, M. C.2011A numerical study of an inline oscillating cylinder in a free stream. J. Fluid Mech.688, 551-568. · Zbl 1241.76140
[17] Leontini, J. S., Lo Jacono, D. & Thompson, M. C.2013Wake states and frequency selection of a streamwise oscillating cylinder. J. Fluid Mech.730, 162-192. · Zbl 1291.76114
[18] Li, Z., Jaiman, R. K. & Khoo, B. C.2017Coupled dynamics of vortex-induced vibration and stationary wall at low Reynolds number. Phys. Fluids29 (9), 093601.
[19] Li, Z., Yao, W., Yang, K., Jaiman, R. K. & Khoo, B. C.2016On the vortex-induced oscillations of a freely vibrating cylinder in the vicinity of a stationary plane wall. J. Fluids Struct.65, 495-526.
[20] Newman, D. J. & Karniadakis, G. E.1997A direct numerical simulation study of flow past a freely vibrating cable. J. Fluid Mech.344, 95-136. · Zbl 0901.76062
[21] Olinger, D. & Sreenivasan, K.1988Nonlinear dynamics of the wake of an oscillating cylinder. Phys. Rev. Lett.60, 797-800.
[22] Ongoren, A. & Rockwell, D.1988aFlow structure from an oscillating cylinder. Part 1. Mechanisms of phase shift and recovery in the near wake. J. Fluid Mech.191, 197-223.
[23] Ongoren, A. & Rockwell, D.1988bFlow structure from an oscillating cylinder. Part 2. Mode competition in the near wake. J. Fluid Mech.191, 225-245.
[24] Pikovsky, A., Rosenblum, M. & Kurths, J.2001Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press. · Zbl 0993.37002
[25] Randolph, M. F., Gaudin, C., Gourvenec, S. M., White, D. J., Boylan, N. & Cassidy, M. J.2011Recent advances in offshore geotechnics for deep water oil and gas developments. Ocean Engng38 (7), 818-834.
[26] Rao, A., Stewart, B. E., Thompson, M. C., Leweke, T. & Hourigan, K.2011Flows past rotating cylinders next to a wall. J. Fluids Struct.27 (5-6), 668-679.
[27] Rao, A., Thompson, M. C., Leweke, T. & Hourigan, K.2013The flow past a circular cylinder translating at different heights above a wall. J. Fluids Struct.41, 9-21.
[28] Rao, A., Thompson, M. C., Leweke, T. & Hourigan, K.2015Flow past a rotating cylinder translating at different gap heights along a wall. J. Fluids Struct.57, 314-330.
[29] Ren, C., Cheng, L., Tong, F., Xiong, C. & Chen, T.2019Oscillatory flow regimes around four cylinders in a diamond arrangement. J. Fluid Mech.877, 955-1006. · Zbl 1430.76151
[30] Saffman, P. G.1992Vortex Dynamics. Cambridge University Press. · Zbl 0777.76004
[31] Sarpkaya, T.2004A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct.19 (4), 389-447.
[32] Stewart, B. E., Thompson, M. C., Leweke, T. & Hourigan, K.2010The wake behind a cylinder rolling on a wall at varying rotation rates. J. Fluid Mech.648, 225-256. · Zbl 1189.76156
[33] Tang, G., Cheng, L., Tong, F., Lu, L. & Zhao, M.2017Modes of synchronisation in the wake of a streamwise oscillatory cylinder. J. Fluid Mech.832, 146-169. · Zbl 1419.76182
[34] Tham, D. M. Y., Gurugubelli, P. S., Li, Z. & Jaiman, R. K.2015Freely vibrating circular cylinder in the vicinity of a stationary wall. J. Fluids Struct.59, 103-128.
[35] Thompson, M. C., Radi, A., Rao, A., Sheridan, J. & Hourigan, K.2014Low-Reynolds-number wakes of elliptical cylinders: from the circular cylinder to the normal flat plate. J. Fluid Mech.751, 570-600.
[36] Wang, X. K. & Tan, S. K.2008Near-wake flow characteristics of a circular cylinder close to a wall. J. Fluids Struct.24, 605-627.
[37] Williamson, C. H.1995Vortex dynamics in the wake of a cylinder. In Fluid Vortices. Springer.
[38] Williamson, C. H. K.1996Three-dimensional wake transition. J. Fluid Mech.328, 345-407. · Zbl 0899.76129
[39] Williamson, C. H. K. & Govardhan, R.2004Vortex-induced vibrations. Annu. Rev. Fluid Mech.36, 413-455. · Zbl 1125.74323
[40] Williamson, C. H. K. & Roshko, A.1988Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct.2, 355-381.
[41] Woo, H.1999A note on phase-locked states at low Reynolds numbers. J. Fluids Struct.13, 153-158.
[42] Wu, J. Z., Lu, X. Y., Denny, A. G., Fan, M. & Wu, J. M.1998Post-stall flow control on an airfoil by local unsteady forcing. J. Fluid Mech.371, 21-58. · Zbl 1054.76551
[43] Xu, S. J., Zhou, Y. & Wang, M. H.2006A symmetric binary-vortex street behind a longitudinally oscillating cylinder. J. Fluid Mech.556, 27-43. · Zbl 1093.76519
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.