×

zbMATH — the first resource for mathematics

Cell-like mappings and their generalizations. (English) Zbl 0364.54009

MSC:
54C55 Absolute neighborhood extensor, absolute extensor, absolute neighborhood retract (ANR), absolute retract spaces (general properties)
57N60 Cellularity in topological manifolds
PDF BibTeX Cite
Full Text: DOI
References:
[1] J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20 – 104. · Zbl 0096.17404
[2] J. J. Andrews and M. L. Curtis, \?-space modulo an arc, Ann. of Math. (2) 75 (1962), 1 – 7. · Zbl 0105.17403
[3] Steve Armentrout, \?\? properties of compact sets, Trans. Amer. Math. Soc. 143 (1969), 487 – 498. · Zbl 0195.25503
[4] Steve Armentrout, Homotopy properties of decomposition spaces, Trans. Amer. Math. Soc. 143 (1969), 499 – 507. · Zbl 0195.25504
[5] Steve Armentrout, Cellular decompositions of 3-manifolds that yield 3-manifolds, American Mathematical Society, Providence, R. I., 1971. Memoirs of the American Mathematical Society, No. 107. · Zbl 0221.57003
[6] Steve Armentrout and Thomas M. Price, Decompositions into compact sets with \?\? properties, Trans. Amer. Math. Soc. 141 (1969), 433 – 442. · Zbl 0183.27902
[7] Edward G. Begle, The Vietoris mapping theorem for bicompact spaces, Ann. of Math. (2) 51 (1950), 534 – 543. · Zbl 0036.38803
[8] E. G. Begle, The Vietoris mapping theorem for bicompact spaces. II, Michigan Math. J. 3 (1955 – 1956), 179 – 180. · Zbl 0075.32001
[9] R. H. Bing, A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Ann. of Math. (2) 56 (1952), 354 – 362. · Zbl 0049.40401
[10] R. H. Bing, A simple closed curve that pierces no disk, J. Math. Pures Appl. (9) 35 (1956), 337 – 343. · Zbl 0070.40203
[11] R. H. Bing, A decomposition of \?³ into points and tame arcs such that the decomposition space is topologically different from \?³, Ann. of Math. (2) 65 (1957), 484 – 500. · Zbl 0079.38806
[12] R. H. Bing, The cartesian product of a certain nonmanifold and a line is \?\(^{4}\), Ann. of Math. (2) 70 (1959), 399 – 412. · Zbl 0089.39501
[13] R. H. Bing, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294 – 305. · Zbl 0109.15406
[14] R. H. Bing, Decompositions of \?³, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall. Englewood Cliffs, N.J., 1962, pp. 5 – 21.
[15] R. H. Bing, Inequivalent families of periodic homeomorphisms of \?³, Ann. of Math. (2) 80 (1964), 78 – 93. · Zbl 0123.16801
[16] R. H. Bing, Radial engulfing, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 1 – 18.
[17] R. H. Bing, The monotone mapping problem, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 99 – 115.
[18] R. H. Bing, Vertical general position, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 16 – 41. Lecture Notes in Math., Vol. 438.
[19] R. H. Bing and A. Kirkor, An arc is tame in 3-space if and only if it is strongly cellular, Fund. Math. 55 (1964), 175 – 180. · Zbl 0129.15902
[20] William A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. (2) 53 (1951), 276 – 297. · Zbl 0042.17601
[21] Karol Borsuk, Sur l’élimination de phénomènes paradoxaux en topologie générale, Proceedings of the International Congress of Mathematicians, Amsterdam, 1954, Vol. 1, Erven P. Noordhoff N.V., Groningen; North-Holland Publishing Co., Amsterdam, 1957, pp. 197 – 208 (French).
[22] Karol Borsuk, Theory of retracts, Monografie Matematyczne, Tom 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967. · Zbl 0153.52905
[23] Karol Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223 – 254. · Zbl 0159.24603
[24] Karol Borsuk, On the concept of shape for metrizable spaces, Bull. acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 127 – 132 (English, with Loose Russian summary). · Zbl 0195.53005
[25] K. Borsuk, Theory of shape, Matematisk Institut, Aarhus Universitet, Aarhus, 1971. Lecture Notes Series, No. 28. · Zbl 0232.55021
[26] Glen E. Bredon, Sheaf theory, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1967. · Zbl 0158.20505
[27] William Browder, Structures on \?\times \?, Proc. Cambridge Philos. Soc. 61 (1965), 337 – 345. · Zbl 0129.39201
[28] W. Browder, J. Levine, and G. R. Livesay, Finding a boundary for an open manifold, Amer. J. Math. 87 (1965), 1017 – 1028. · Zbl 0134.42801
[29] Morton Brown, The monotone union of open \?-cells is an open \?-cell, Proc. Amer. Math. Soc. 12 (1961), 812 – 814. · Zbl 0103.39305
[30] Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113 – 115. , https://doi.org/10.1090/S0002-9904-1960-10420-X Morton Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74 – 76.
[31] Morton Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331 – 341. · Zbl 0201.56202
[32] Morton Brown, Wild cells and spheres in higher dimensions, Michigan Math. J. 14 (1967), 219 – 224. · Zbl 0147.23902
[33] John L. Bryant, Taming polyhedra in the trivial range, Michigan Math. J. 13 (1966), 377 – 384. · Zbl 0145.20403
[34] J. L. Bryant, Concerning uncountable families of \?-cells in \?\(^{n}\), Michigan Math. J. 15 (1968), 477 – 479. · Zbl 0175.20603
[35] John L. Bryant, Euclidean space modulo a cell, Fund. Math. 63 (1968), 43 – 51. · Zbl 0191.22103
[36] J. L. Bryant, On embeddings of compacta in Euclidean space, Proc. Amer. Math. Soc. 23 (1969), 46 – 51. · Zbl 0186.57701
[37] J. L. Bryant, On embeddings with locally nice cross-sections, Trans. Amer. Math. Soc. 155 (1971), 327 – 332. · Zbl 0218.57006
[38] J. L. Bryant, On embeddings of 1-dimensional compacta in \?\(^{5}\), Duke Math. J. 38 (1971), 265 – 270. · Zbl 0224.54011
[39] J. L. Bryant, Approximating embeddings of polyhedra in codimension three, Trans. Amer. Math. Soc. 170 (1972), 85 – 95. · Zbl 0259.57007
[40] J. L. Bryant, An example of a wild (\?-1)-sphere in \?\(^{n}\) in which each 2-complex is tame, Proc. Amer. Math. Soc. 36 (1972), 283 – 288. · Zbl 0261.57005
[41] J. L. Bryant, Euclidean \?-space modulo an (\?-1)-cell, Trans. Amer. Math. Soc. 179 (1973), 181 – 192. · Zbl 0262.57002
[42] J. L. Bryant and J. G. Hollingsworth, Manifold factors that are manifold quotients, Topology 13 (1974), 19 – 24. · Zbl 0282.57006
[43] J. L. Bryant and R. C. Lacher, Mapping cylinder neighborhoods of one-complexes in four-space, Trans. Amer. Math. Soc. 164 (1972), 333 – 339. · Zbl 0235.57006
[44] J. L. Bryant and R. C. Lacher, Embeddings with mapping cylinder neighborhoods, Topology 14 (1975), 191 – 201. · Zbl 0304.57008
[45] J. L. Bryant and R. C. Lacher, A Hopf-like invariant for mappings between odd-dimensional manifolds, General Topology and Appl. 8 (1978), no. 1, 47 – 62. · Zbl 0376.57004
[46] J. L. Bryant and R. C. Lacher, Blowing up homology manifolds, J. London Math. Soc. (2) 16 (1977), no. 2, 372 – 376. · Zbl 0373.57003
[47] J. L. Bryant, R. C. Lacher, and B. J. Smith, Free spheres with mapping cylinder neighborhoods, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 58 – 65. Lecture Notes in Math., Vol. 438. · Zbl 0306.57005
[48] J. L. Bryant and C. L. Seebeck III, Locally nice embeddings in codimension three, Bull. Amer. Math. Soc. 74 (1968), 378 – 380. · Zbl 0169.26202
[49] John L. Bryant and Charles L. Seebeck III, Locally nice embeddings of polyhedra, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 23 – 28.
[50] J. L. Bryant and C. L. Seebeck III, Locally nice embeddings of polyhedra, Quart. J. Math. Oxford Ser. (2) 19 (1968), 257 – 274. · Zbl 0157.54602
[51] J. L. Bryant and C. L. Seebeck III, An equivalence theorem for embeddings of compact absolute neighborhood retracts, Proc. Amer. Math. Soc. 20 (1969), 256 – 258. · Zbl 0191.22101
[52] J. L. Bryant and C. L. Seebeck III, Locally nice embeddings in codimension three, Quart. J. Math. Oxford Ser. (2) 21 (1970), 265 – 272. · Zbl 0199.26703
[53] J. L. Bryant and D. W. Sumners, On embeddings of 1-dimensional compacta in a hyperplane in \?\(^{4}\), Pacific J. Math. 33 (1970), 555 – 557. · Zbl 0182.26303
[54] C. E. Burgess, Embeddings of surfaces in Euclidean three-space, Bull. Amer. Math. Soc. 81 (1975), no. 5, 795 – 818. · Zbl 0318.57006
[55] J. W. Cannon, \?\?\? properties in neighbourhoods of embedded surfaces and curves in \?³, Canad. J. Math. 25 (1973), 31 – 73. · Zbl 0242.55003
[56] J. W. Cannon, Taming cell-like embedding relations, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 66 – 118. Lecture Notes in Math., Vol. 438.
[57] J. W. Cannon, Taming codimension-one generalized submanifolds of \?\(^{n}\), Topology 16 (1977), no. 4, 323 – 334. · Zbl 0386.57004
[58] J. C. Cantrell, Almost locally flat embeddings of \?\(^{n}\)\(^{-}\)\textonesuperior in \?\(^{n}\), Bull. Amer. Math. Soc. 69 (1963), 716 – 718. · Zbl 0118.39202
[59] J. C. Cantrell, \?-frames in euclidean \?-space, Proc. Amer. Math. Soc. 15 (1964), 574 – 578. · Zbl 0129.39603
[60] J. C. Cantrell and R. C. Lacher, Local flattening of a submanifold, Quart. J. Math. Oxford Ser. (2) 20 (1969), 1 – 10. · Zbl 0172.25601
[61] J. C. Cantrell and R. C. Lacher, Some local flatness criteria for low codimensional submanifolds, Quart. J. Math. Oxford Ser. (2) 21 (1970), 129 – 136. · Zbl 0197.20203
[62] A. V. Černavskiĭ, Topological embeddings of manifolds, Dokl. Akad. Nauk SSSR 187 (1969), 1247 – 1250 (Russian).
[63] A. V. Černavskiĭ, Locally homotopically unknotted embeddings of manifolds, Dokl. Akad. Nauk SSSR 181 (1968), 290 – 293 (Russian).
[64] A. V. Černavskiĭ, Local contractibility of the group of homeomorphisms of a manifold., Mat. Sb. (N.S.) 79 (121) (1969), 307 – 356 (Russian).
[65] V. P. Kompaniec and A. V. Černavskiĭ, Equivalence of two classes of sphere mappings, Soviet Math. Dokl. 7 (1966), 1083 – 1085. · Zbl 0168.20902
[66] T. A. Chapman, On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math. 76 (1972), no. 3, 181 – 193. · Zbl 0262.55016
[67] T. A. Chapman, Shapes of finite-dimensional compacta, Fund. Math. 76 (1972), no. 3, 261 – 276. · Zbl 0222.55019
[68] T. A. Chapman, Compact Hilbert cube manifolds and the invariance of Whitehead torsion, Bull. Amer. Math. Soc. 79 (1973), 52 – 56. · Zbl 0251.57004
[69] T. A. Chapman, Cell-like mappings of Hilbert cube manifolds: applications to simple homotopy theory, Bull. Amer. Math. Soc. 79 (1973), 1286 – 1291. · Zbl 0289.58003
[70] T. A. Chapman, Cell-like mappings, Algebraic and geometrical methods in topology (Conf. Topological Methods in Algebraic Topology, State Univ. New York, Binghamton, N.Y., 1973), Springer, Berlin, 1974, pp. 230 – 240. Lecture Notes in Math., Vol. 428.
[71] T. A. Chapman, Homotopic homeomorphisms of Hilbert cube manifolds, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 122 – 136. Lecture Notes in Math., Vol. 438.
[72] T. A. Chapman, Cell-like mappings of Hilbert cube manifolds: solution of a handle problem, General Topol. Appl. 5 (1975), 123 – 145. · Zbl 0308.58002
[73] C. O. Christenson and R. P. Osborne, Pointlike subsets of a manifold, Pacific J. Math. 24 (1968), 431 – 435. · Zbl 0159.52904
[74] Marshall M. Cohen, Simplicial structures and transverse cellularity, Ann. of Math. (2) 85 (1967), 218 – 245. · Zbl 0147.42602
[75] Marshall M. Cohen, A general theory of relative regular neighborhoods, Trans. Amer. Math. Soc. 136 (1969), 189 – 229. · Zbl 0182.57602
[76] Marshall M. Cohen, Homeomorphisms between homotopy manifolds and their resolutions, Invent. Math. 10 (1970), 239 – 250. · Zbl 0202.22905
[77] Marshall M. Cohen, A course in simple-homotopy theory, Springer-Verlag, New York-Berlin, 1973. Graduate Texts in Mathematics, Vol. 10. · Zbl 0261.57009
[78] M. Cohen and D. Sullivan, On the regular neighborhood of a two-sided submanifold, Topology 9 (1970), 141 – 147. · Zbl 0177.52201
[79] E. H. Connell, Images of \?_{\?} under acyclic maps, Amer. J. Math. 83 (1961), 787 – 790. · Zbl 0101.16502
[80] E. H. Connell, A topological \?-cobordism theorem for \?\ge 5, Illinois J. Math. 11 (1967), 300 – 309. · Zbl 0146.45201
[81] Donald Coram, Semicellularity, decompositions and mappings in manifolds, Trans. Amer. Math. Soc. 191 (1974), 227 – 244. · Zbl 0286.57006
[82] D. S. Coram and P. F. Duvall Jr., Approximate fibrations, Rocky Mountain J. Math. 7 (1977), no. 2, 275 – 288. · Zbl 0367.55019
[83] Donald Coram and Paul Duvall, Approximate fibrations and a movability condition for maps, Pacific J. Math. 72 (1977), no. 1, 41 – 56. · Zbl 0368.55016
[84] Robert J. Daverman, Locally nice codimension one manifolds are locally flat, Bull. Amer. Math. Soc. 79 (1973), 410 – 413. · Zbl 0256.57005
[85] Robert J. Daverman, On the absence of tame disks in certain wild cells, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 142 – 155. Lecture Notes in Math., Vol. 438.
[86] Robert J. Daverman, A summary of results and problems concerning flatness of codimension one spheres in \?\(^{n}\), Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 156 – 165. Lecture Notes in Math., Vol. 438.
[87] Robert J. Daverman, Singular regular neighborhoods and local flatness in codimension one, Proc. Amer. Math. Soc. 57 (1976), no. 2, 357 – 362. · Zbl 0332.57006
[88] Edwin Duda, Reflexive compact mappings, Proc. Amer. Math. Soc. 17 (1966), 688 – 693. · Zbl 0145.19501
[89] James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. · Zbl 0144.21501
[90] Paul F. Duvall Jr., Weakly flat spheres, Michigan Math. J. 16 (1969), 117 – 124. · Zbl 0179.52202
[91] J. Dydak, On the shape of decomposition spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), no. 3, 293 – 298 (English, with Russian summary). · Zbl 0314.55013
[92] Carl Pixley and William Eaton, \?\textonesuperior cross a UV decomposition of \?³ yields \?\textonesuperior \times \?³, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 166 – 194. Lecture Notes in Math., Vol. 438.
[93] C. H. Edwards Jr., Open 3-manifolds which are simply connected at infinity, Proc. Amer. Math. Soc. 14 (1963), 391 – 395. · Zbl 0117.40702
[94] David A. Edwards and Ross Geoghegan, Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction, Ann. of Math. (2) 101 (1975), 521 – 535. · Zbl 0287.57005
[95] Robert D. Edwards, Demension theory. I, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 195 – 211. Lecture Notes in Math., Vol. 438.
[96] Robert D. Edwards and Leslie C. Glaser, A method for shrinking decompositions of certain manifolds, Trans. Amer. Math. Soc. 165 (1972), 45 – 56. · Zbl 0244.57004
[97] Robert D. Edwards and Robion C. Kirby, Deformations of spaces of imbeddings, Ann. Math. (2) 93 (1971), 63 – 88. · Zbl 0214.50303
[98] Robert D. Edwards and Richard T. Miller, Cell-like closed-0-dimensional decompositions of \?³ are \?\(^{4}\) factors, Trans. Amer. Math. Soc. 215 (1976), 191 – 203. · Zbl 0337.57003
[99] Samuel Eilenberg and R. L. Wilder, Uniform local connectedness and contractibility, Amer. J. Math. 64 (1942), 613 – 622. · Zbl 0061.41103
[100] D. B. A. Epstein, The degree of a map, Proc. London Math. Soc. (3) 16 (1966), 369 – 383. · Zbl 0148.43103
[101] D. E. Galewski, J. G. Hollingsworth, and D. R. McMillan Jr., On the fundamental group and homotopy type of open 3-manifolds, General Topology and Appl. 2 (1972), 299 – 313. · Zbl 0243.55002
[102] Ross Geoghegan and R. C. Lacher, Compacta with the shape of finite complexes, Fund. Math. 92 (1976), no. 1, 25 – 27. · Zbl 0339.55012
[103] Ross Geoghegan and R. Richard Summerhill, Concerning the shapes of finite-dimensional compacta, Trans. Amer. Math. Soc. 179 (1973), 281 – 292. · Zbl 0281.57004
[104] Ross Geoghegan and R. Richard Summerhill, Pseudo-boundaries and pseudo-interiors in Euclidean spaces and topological manifolds, Trans. Amer. Math. Soc. 194 (1974), 141 – 165. · Zbl 0288.57001
[105] Ross Geoghegan and R. Richard Summerhill, Infinite-dimensional methods in finite-dimensional geometric topology, Bull. Amer. Math. Soc. 78 (1972), 1009 – 1014. · Zbl 0256.57004
[106] David S. Gillman, Free curves in \?³, Pacific J. Math. 28 (1969), 533 – 542. · Zbl 0175.20604
[107] Herman Gluck, Embeddings in the trivial range, Ann. of Math. (2) 81 (1965), 195 – 210. · Zbl 0134.42904
[108] H. C. Griffith and L. R. Howell Jr., Strongly cellular cells in \?³ are tame, Fund. Math. 65 (1969), 23 – 32. · Zbl 0181.51603
[109] Leslie C. Glaser, Contractible complexes in \?\(^{n}\), Proc. Amer. Math. Soc. 16 (1965), 1357 – 1364. · Zbl 0135.41701
[110] Leslie C. Glaser, On double suspensions of arbitrary nonsimply connected homology \?-spheres, Topology of manifolds (Proc. Inst., Univ. Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 5 – 17.
[111] L. C. Glaser, Monotone noncompact mappings of \?^{\?} onto \?^{\?} for \?\ge 4 and \?\ge 3, Proc. Amer. Math. Soc. 23 (1969), 282 – 286. · Zbl 0182.56801
[112] Leslie C. Glaser, Euclidean (\?+\?)-space modulo an \?-plane of collapsible \?-complexes, Trans. Amer. Math. Soc. 157 (1971), 261 – 278. · Zbl 0217.49102
[113] Leslie C. Glaser, On mildly cellular pseudo cells, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 215 – 224. Lecture Notes in Math., Vol. 438.
[114] M. A. Gutiérrez and R. C. Lacher, Semifree group actions and homology spheres, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 240 – 244. Lecture Notes in Math., Vol. 438.
[115] Wolfgang Haken, Some results on surfaces in 3-manifolds, Studies in Modern Topology, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1968, pp. 39 – 98.
[116] Michael Handel, Approximating stratum preserving CE maps between CS sets by stratum preserving homeomorphisms, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 245 – 250. Lecture Notes in Math., Vol. 438. · Zbl 0343.57004
[117] Olof Hanner, Some theorems on absolute neighborhood retracts, Ark. Mat. 1 (1951), 389 – 408. · Zbl 0042.41102
[118] Peter W. Harley, On suspending homotopy spheres, Proc. Amer. Math. Soc. 19 (1968), 1123 – 1124. · Zbl 0169.55202
[119] O. G. Harrold and C. L. Seebeck, Locally weakly flat spaces, Trans. Amer. Math. Soc. 138 (1969), 407 – 414. · Zbl 0176.21901
[120] William E. Haver, The closure of the space of homeomorphisms on a manifold, Trans. Amer. Math. Soc. 195 (1974), 401 – 419. · Zbl 0295.54049
[121] William E. Haver, Mappings between \?\?\?s that are fine homotopy equivalences, Pacific J. Math. 58 (1975), no. 2, 457 – 461. · Zbl 0311.55006
[122] John Hempel, Free surfaces in \?³, Trans. Amer. Math. Soc. 141 (1969), 263 – 270.
[123] J. P. Hempel and D. R. McMillan Jr., Locally nice embeddings of manifolds, Amer. J. Math. 88 (1966), 1 – 19. · Zbl 0139.17001
[124] J. P. Hempel and D. R. McMillan Jr., Covering three-manifolds with open cells, Fund. Math. 64 (1969), 99 – 104. · Zbl 0176.53302
[125] D. W. Henderson, Applications of infinite-dimensional manifolds to quotient spaces of complete ANR’s, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 748 – 753 (English, with Russian summary). · Zbl 0218.55012
[126] Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109 – 203; ibid. (2) 79 (1964), 205 – 326. · Zbl 0122.38603
[127] Morris W. Hirsch, On homotopy spheres of low dimension, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 199 – 204.
[128] Morris W. Hirsch, On tubular neighborhoods of piecewise linear and topological manifolds., Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 63 – 80.
[129] J. G. Hollingsworth and T. B. Rushing, Embeddings of shape classes of compacta in the trivial range, Pacific J. Math. 60 (1975), no. 2, 103 – 110. · Zbl 0327.57005
[130] John Hollingsworth and R. B. Sher, Triangulating neighborhoods in topological manifolds, General Topology and Appl. 1 (1971), 345 – 348. · Zbl 0225.57005
[131] Wu-chung Hsiang and Julius L. Shaneson, Fake tori, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 18 – 51. · Zbl 0288.57006
[132] W.-c. Hsiang and C. T. C. Wall, On homotopy tori. II, Bull. London Math. Soc. 1 (1969), 341 – 342. · Zbl 0181.27101
[133] Sze-tsen Hu, Theory of retracts, Wayne State University Press, Detroit, 1965. · Zbl 0029.32203
[134] Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. · Zbl 0060.39808
[135] L. S. Husch, Mapping cylinders and the annulus conjecture, Bull. Amer. Math. Soc. 75 (1969), 506 – 508. · Zbl 0175.50001
[136] L. S. Husch, Approximating approximate fibrations by fibrations, Canad. J. Math. 29 (1977), no. 5, 897 – 913. · Zbl 0366.55006
[137] L. S. Husch and T. M. Price, Finding a boundary for a 3-manifold, Ann. of Math. (2) 91 (1970), 223 – 235. · Zbl 0169.55302
[138] D. M. Hyman, \?\?\? divisors and absolute neighborhood contractability, Fund. Math. 62 (1968), 61 – 73. · Zbl 0164.23602
[139] C. Kearton, Regular neighbourhoods and mapping cylinders, Proc. Cambridge Philos. Soc. 70 (1971), 15 – 18. · Zbl 0213.25003
[140] James Keesling, The Čech homology of compact connected abelian topological groups with applications to shape theory, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 325 – 331. Lecture Notes in Math., Vol. 438.
[141] Michel A. Kervaire, Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67 – 72. · Zbl 0187.20401
[142] Robion C. Kirby, On the set of non-locally flat points of a submanifold of codimension one, Ann. of Math. (2) 88 (1968), 281 – 290. · Zbl 0185.51603
[143] Robion C. Kirby, The union of flat (\?-1)-balls is flat in \?\(^{n}\), Bull. Amer. Math. Soc. 74 (1968), 614 – 617. · Zbl 0157.54603
[144] Robion C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. (2) 89 (1969), 575 – 582. · Zbl 0176.22004
[145] R. C. Kirby and L. C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742 – 749. · Zbl 0189.54701
[146] R. C. Kirby and L. C. Siebenmann, Normal bundles for codimension 2 locally flat imbeddings, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 310 – 324. Lecture Notes in Math., Vol. 438. · Zbl 0331.57004
[147] Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah; Annals of Mathematics Studies, No. 88. · Zbl 0361.57004
[148] J. M. Kister, Microbundles are fibre bundles, Ann. of Math. (2) 80 (1964), 190 – 199. · Zbl 0131.20602
[149] V. L. Klee Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30 – 45. · Zbl 0064.10505
[150] Tom Knoblauch, Imbedding compact 3-manifolds in \?³, Proc. Amer. Math. Soc. 48 (1975), 447 – 453. · Zbl 0306.57002
[151] V. P. Kompaniec, A homotopy criterion for a pointlike mapping, Ukrain. Mat. Ž. 18 (1966), no. 4, 3 – 10 (Russian). · Zbl 0156.44003
[152] George Kozlowski, Factorization of certain maps up to homotopy, Proc. Amer. Math. Soc. 21 (1969), 88 – 92. · Zbl 0184.26702
[153] K. Kuratowski and R. C. Lacher, A theorem on the space of monotone mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), 797 – 800 (English, with Loose Russian summary). · Zbl 0195.24401
[154] Kyung Whan Kwun, A fundamental theorem on decompositions of the sphere into points and tame arcs, Proc. Amer. Math. Soc. 12 (1961), 47 – 50. · Zbl 0096.17206
[155] Kyung Whan Kwun, Uniqueness of the open cone neighborhood, Proc. Amer. Math. Soc. 15 (1964), 476 – 479. · Zbl 0129.38204
[156] Kyung Whan Kwun and Frank Raymond, Almost acyclic maps on manifolds, Amer. J. Math. 86 (1964), 638 – 650. · Zbl 0127.13602
[157] Kyung Whan Kwun and Frank Raymond, Mapping cylinder neighborhoods, Michigan Math. J. 10 (1963), 353 – 357. · Zbl 0118.38901
[158] C. Lacher, Locally flat strings and half-strings, Proc. Amer. Math. Soc. 18 (1967), 299 – 304. · Zbl 0153.25603
[159] R. C. Lacher, Cell-like mappings of \?\?\?’\?, Bull. Amer. Math. Soc. 74 (1968), 933 – 935. · Zbl 0164.53404
[160] R. C. Lacher, A disk in \?-space which lies on no 2-sphere, Duke Math. J. 35 (1968), 735 – 738. · Zbl 0177.26704
[161] R. C. Lacher, Some wild spheres and group actions, Fund. Math. 67 (1970), 195 – 202. · Zbl 0198.56302
[162] R. C. Lacher, Cell-like spaces, Proc. Amer. Math. Soc. 20 (1969), 598 – 602. · Zbl 0175.49902
[163] R. C. Lacher, Cell-like mappings. I, Pacific J. Math. 30 (1969), 717 – 731. · Zbl 0182.57601
[164] R. C. Lacher, Cell-like mappings. II, Pacific J. Math. 35 (1970), 649 – 660. · Zbl 0212.55702
[165] R. C. Lacher, Cellularity criteria for maps, Michigan Math. J. 17 (1970), 385 – 396. · Zbl 0188.55702
[166] R. C. Lacher, Suspending homotopy 3-spheres and embedding mapping cylinders in \?\(^{4}\), Proc. Amer. Math. Soc. 27 (1971), 584 – 586. · Zbl 0218.57004
[167] R. C. Lacher, Finiteness theorems in the study of mappings between manifolds, Proceedings of the University of Oklahoma Topology Conference Dedicated to Robert Lee Moore (Norman, Okla., 1972) Univ. Oklahoma, Norman, Okla., 1972, pp. 79 – 96.
[168] R. C. Lacher, Some mapping theorems, Trans. Amer. Math. Soc. 195 (1974), 291 – 303. · Zbl 0304.57005
[169] R. C. Lacher, \?-sphere mappings on \?^{2\?+1}, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 332 – 335. Lecture Notes in Math., Vol. 438.
[170] R. C. Lacher, A cellularity criterion based on codimension, Glasnik Mat. Ser. III 11(31) (1976), no. 1, 135 – 140 (English, with Serbo-Croatian summary). · Zbl 0324.57008
[171] R. C. Lacher and D. R. McMillan Jr., Partially acyclic mappings between manifolds, Amer. J. Math. 94 (1972), 246 – 266. · Zbl 0239.57007
[172] H. W. Lambert, Replacing certain maps of 3-manifolds by homeomorphisms, Proc. Amer. Math. Soc. 23 (1969), 676 – 678. · Zbl 0184.48803
[173] Sibe Mardešić, Decreasing sequences of cubes and compacta of trivial shape, General Topology and Appl. 2 (1972), 17 – 23. · Zbl 0232.55026
[174] Sibe Mardešić and Šime Ungar, The relative Hurewicz theorem in shape theory, Glasnik Mat. Ser. III 9(29) (1974), 317 – 328 (English, with Serbo-Croatian summary). · Zbl 0298.55004
[175] A. Marin and Y. M. Visetti, A general proof of Bing’s shrinkability criterion, Proc. Amer. Math. Soc. 53 (1975), no. 2, 501 – 507. · Zbl 0326.54011
[176] Joseph Martin, The sum of two crumpled cubes, Michigan Math. J. 13 (1966), 147 – 151. · Zbl 0145.20402
[177] William S. Massey, Algebraic topology: An introduction, Harcourt, Brace & World, Inc., New York, 1967. · Zbl 0153.24901
[178] Barry Mazur, A note on some contractible 4-manifolds, Ann. of Math. (2) 73 (1961), 221 – 228. · Zbl 0127.13604
[179] D. R. McMillan Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327 – 337. · Zbl 0117.17102
[180] D. R. McMillan Jr., A criterion for cellularity in a manifold. II, Trans. Amer. Math. Soc. 126 (1967), 217 – 224. · Zbl 0155.31603
[181] D. R. McMillan Jr., Strong homotopy equivalence of 3-manifolds, Bull. Amer. Math. Soc. 73 (1967), 718 – 722. · Zbl 0161.42603
[182] D. R. McMillan Jr., Piercing a disk along a cellular set, Proc. Amer. Math. Soc. 19 (1968), 153 – 157. · Zbl 0157.54701
[183] D. R. McMillan Jr., Compact, acyclic subsets of three-manifolds, Michigan Math. J. 16 (1969), 129 – 136. · Zbl 0176.53403
[184] D. R. McMillan Jr., Acyclicity in three-manifolds, Bull. Amer. Math. Soc. 76 (1970), 942 – 964. · Zbl 0198.56303
[185] D. R. McMillan Jr., Cutting off homotopies on acyclic sets, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 343 – 352. Lecture Notes in Math., Vol. 438.
[186] D. R. McMillan Jr. and Harry Row, Tangled embeddings of one-dimensional continua, Proc. Amer. Math. Soc. 22 (1969), 378 – 385. · Zbl 0181.27201
[187] Donald V. Meyer, More decompositions of \?\(^{n}\) which are factors of \?\(^{n}\)\(^{+}\)\textonesuperior , Fund. Math. 67 (1970), 49 – 65. · Zbl 0194.55801
[188] R. T. Miller, Mapping cylinder neighborhoods of some \?\?\?’s, Bull. Amer. Math. Soc. 81 (1975), 187 – 188. · Zbl 0296.54015
[189] J. Milnor, Topological manifolds and smooth manifolds, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 132 – 138. J. Milnor, Microbundles. I, Topology 3 (1964), no. suppl. 1, 53 – 80. · Zbl 0124.38404
[190] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358 – 426. · Zbl 0147.23104
[191] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. · Zbl 0298.57008
[192] R. L. Moore, Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc. 27 (1925), no. 4, 416 – 428. · JFM 51.0464.03
[193] R. L. Moore, Foundations of point set theory, Revised edition. American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. · Zbl 0192.28901
[194] John W. Morgan and Dennis P. Sullivan, The transversality characteristic class and linking cycles in surgery theory, Ann. of Math. (2) 99 (1974), 463 – 544. · Zbl 0295.57008
[195] M. H. A. Newman, Local connection in locally compact spaces, Proc. Amer. Math. Soc. 1 (1950), 44 – 53. · Zbl 0036.38802
[196] M. H. A. Newman, The engulfing theorem for topological manifolds, Ann. of Math. (2) 84 (1966), 555 – 571. · Zbl 0166.19801
[197] Victor Nicholson, Mapping cylinder neighborhoods, Trans. Amer. Math. Soc. 143 (1969), 259 – 268. · Zbl 0201.56203
[198] Michael Olinick, Factoring monotone maps of \?\(^{n}\), Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 185 – 189.
[199] C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1 – 26. · Zbl 0078.16402
[200] T. M. Price, A necessary condition that a cellular upper semi-continuous decomposition of \?\(^{n}\) yield \?\(^{n}\), Trans. Amer. Math. Soc. 122 (1966), 427 – 435. · Zbl 0138.18002
[201] T. M. Price, On codimension two embeddings, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 365 – 370. Lecture Notes in Math., Vol. 438. T. M. Price and C. L. Seebeck III, A codimension two taming theorem, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 371 – 394. Lecture Notes in Math., Vol. 438. C. L. Seebeck III, Locally homotopically unknotted embeddings of manifolds in codimension two, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 427 – 430. Lecture Notes in Math., Vol. 438.
[202] T. M. Price and C. L. Seebeck III, Somewhere locally flat codimension one manifolds with 1-\?\?\? complements are locally flat, Trans. Amer. Math. Soc. 193 (1974), 111 – 122. · Zbl 0297.57009
[203] T. M. Price, On codimension two embeddings, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 365 – 370. Lecture Notes in Math., Vol. 438. T. M. Price and C. L. Seebeck III, A codimension two taming theorem, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 371 – 394. Lecture Notes in Math., Vol. 438. C. L. Seebeck III, Locally homotopically unknotted embeddings of manifolds in codimension two, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 427 – 430. Lecture Notes in Math., Vol. 438.
[204] J. H. Roberts and N. E. Steenrod, Monotone transformations of two-dimensional manifolds, Ann. of Math. (2) 39 (1938), no. 4, 851 – 862. · Zbl 0019.37203
[205] C. P. Rourke and B. J. Sanderson, Block bundles. I, Ann. of Math. (2) 87 (1968), 1 – 28. , https://doi.org/10.2307/1970591 C. P. Rourke and B. J. Sanderson, Block bundles. II. Transversality, Ann. of Math. (2) 87 (1968), 256 – 278. · Zbl 0215.52301
[206] C. P. Rourke and B. J. Sanderson, An embedding without a normal microbundle, Invent. Math. 3 (1967), 293 – 299. · Zbl 0168.44602
[207] T. Benny Rushing, Topological embeddings, Academic Press, New York-London, 1973. Pure and Applied Mathematics, Vol. 52. · Zbl 0295.57003
[208] Hajime Sato, Constructing manifolds by homotopy equivalences. I. An obstruction to constructing \?\?-manifolds from homology manifolds, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 1, 271 – 286 (English, with French summary). · Zbl 0219.57009
[209] C. L. Seebeck III, Collaring and (\?-1)-manifold in an \?-manifold, Trans. Amer. Math. Soc. 148 (1970), 63 – 68. · Zbl 0194.55702
[210] Charles L. Seebeck III, Tame arcs on wild cells, Proc. Amer. Math. Soc. 29 (1971), 197 – 201. · Zbl 0214.22204
[211] T. M. Price, On codimension two embeddings, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 365 – 370. Lecture Notes in Math., Vol. 438. T. M. Price and C. L. Seebeck III, A codimension two taming theorem, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 371 – 394. Lecture Notes in Math., Vol. 438. C. L. Seebeck III, Locally homotopically unknotted embeddings of manifolds in codimension two, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 427 – 430. Lecture Notes in Math., Vol. 438.
[212] Julius L. Shaneson, Spines and spinelessness, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 431 – 440. Lecture Notes in Math., Vol. 438. · Zbl 0344.55007
[213] Richard B. Sher, Realizing cell-like maps in Euclidean space, General Topology and Appl. 2 (1972), 75 – 89. · Zbl 0237.54004
[214] R. B. Sher and W. R. Alford, A note on 0-dimensional decompositions of \?³, Amer. Math. Monthly 75 (1968), 377 – 378. · Zbl 0157.29901
[215] L. C. Siebenmann, On detecting Euclidean space homotopically among topological manifolds., Invent. Math. 6 (1968), 245 – 261. · Zbl 0169.55201
[216] L. C. Siebenmann, On detecting open collars, Trans. Amer. Math. Soc. 142 (1969), 201 – 227. · Zbl 0195.53802
[217] L. C. Siebenmann, Are nontriangulable manifolds triangulable?, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 77 – 84. · Zbl 0297.57012
[218] L. C. Siebenmann, Disruption of low-dimensional handlebody theory by Rohlin’s theorem., Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 57 – 76.
[219] L. C. Siebenmann, A total Whitehead torsion obstruction to fibering over the circle, Comment. Math. Helv. 45 (1970), 1 – 48. · Zbl 0215.24603
[220] L. C. Siebenmann, Infinite simple homotopy types, Nederl. Akad. Wetensch. Proc. Ser. A 73 = Indag. Math. 32 (1970), 479 – 495. · Zbl 0203.56002
[221] L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11 (1972), 271 – 294. · Zbl 0216.20101
[222] L. C. Siebenmann, Deformation of homeomorphisms on stratified sets. I, II, Comment. Math. Helv. 47 (1972), 123 – 136; ibid. 47 (1972), 137 – 163. · Zbl 0252.57012
[223] Larry Siebenmann, Chapman’s classification of shapes: a proof using collapsing, Manuscripta Math. 16 (1975), no. 4, 373 – 384. · Zbl 0314.55012
[224] K. A. Sitnikov, On continuous mappings of open sets of a Euclidean space, Mat. Sbornik N.S. 31(73) (1952), 439 – 458 (Russian).
[225] E. G. Skljarenko, Some applications of the theory of sheaves in general topology, Uspehi Mat. Nauk 19 (1964), no. 6 (120), 47 – 70 (Russian). · Zbl 0141.20801
[226] E. G. Skljarenko, Almost acyclic mappings, Mat. Sb. (N.S.) 75 (117) (1968), 296 – 302 (Russian).
[227] E. G. Skljarenko, Homology theory and the exactness axiom, Uspehi Mat. Nauk 24 (1969), no. 5 (149), 87 – 140 (Russian).
[228] E. G. Skljarenko, Uniqueness theorems in homology theory, Mat. Sb. (N.S.) 85 (127) (1971), 201 – 223 (Russian).
[229] Stephen Smale, A Vietoris mapping theorem for homotopy, Proc. Amer. Math. Soc. 8 (1957), 604 – 610. · Zbl 0089.39003
[230] Stephen Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391 – 406. · Zbl 0099.39202
[231] Brian J. Smith, Products of decompositions of \?\(^{n}\), Trans. Amer. Math. Soc. 184 (1973), 31 – 41 (1974). · Zbl 0243.54004
[232] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. · Zbl 0145.43303
[233] John Stallings, On fibering certain 3-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 95 – 100. · Zbl 1246.57049
[234] John Stallings, The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos. Soc. 58 (1962), 481 – 488. · Zbl 0107.40203
[235] John Stallings, On topologically unknotted spheres, Ann. of Math. (2) 77 (1963), 490 – 503. · Zbl 0121.18202
[236] John Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170 – 181. · Zbl 0135.05201
[237] John R. Stallings, Lectures on polyhedral topology, Notes by G. Ananda Swarup. Tata Institute of Fundamental Research Lectures on Mathematics, No. 43, Tata Institute of Fundamental Research, Bombay, 1967. · Zbl 0182.26203
[238] D. Sullivan, On the Hauptvermutung for manifolds, Bull. Amer. Math. Soc. 73 (1967), 598 – 600. · Zbl 0153.54002
[239] Dennis Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) 100 (1974), 1 – 79. · Zbl 0355.57007
[240] D. Sullivan, Differential forms and the topology of manifolds, Manifolds — Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ. Tokyo Press, Tokyo, 1975, pp. 37 – 49.
[241] Joseph L. Taylor, A counterexample in shape theory, Bull. Amer. Math. Soc. 81 (1975), 629 – 632. · Zbl 0316.55010
[242] René Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. Ecole Norm. Sup. (3) 69 (1952), 109 – 182 (French). · Zbl 0049.40001
[243] René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17 – 86 (French). · Zbl 0057.15502
[244] Jussi Väisälä, Minimal mappings in euclidean spaces, Ann. Acad. Sci. Fenn. Ser. A I No. 366 (1965), 22. · Zbl 0144.22103
[245] Jussi Väisälä, The invariance of domain under acyclic mappings, Duke Math. J. 33 (1966), 679 – 681. · Zbl 0144.22201
[246] Gerard A. Venema, Embeddings of compacta with shape dimension in the trivial range, Proc. Amer. Math. Soc. 55 (1976), no. 2, 443 – 448. · Zbl 0332.57005
[247] C. T. C. Wall, On homotopy tori and the annulus theorem, Bull. London Math. Soc. 1 (1969), 95 – 97. · Zbl 0176.22002
[248] C. T. C. Wall, Surgery on compact manifolds, Academic Press, London-New York, 1970. London Mathematical Society Monographs, No. 1. · Zbl 0219.57024
[249] C. T. C. Wall, Finiteness conditions for \?\?-complexes, Ann. of Math. (2) 81 (1965), 56 – 69. · Zbl 0152.21902
[250] John J. Walsh, Monotone and open mappings on manifolds. I, Trans. Amer. Math. Soc. 209 (1975), 419 – 432. · Zbl 0304.57010
[251] James E. West, Compact ANR’s have finite type, Bull. Amer. Math. Soc. 81 (1975), 163 – 165. · Zbl 0297.54015
[252] Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, v. 28, American Mathematical Society, New York, 1942. · Zbl 0061.39301
[253] G. T. Whyburn, Compactness of cetain mappings, Amer. J. Math. 81 (1959), 306 – 314. · Zbl 0088.15101
[254] Raymond Louis Wilder, Topology of Manifolds, American Mathematical Society Colloquium Publications, vol. 32, American Mathematical Society, New York, N. Y., 1949. · Zbl 0039.39602
[255] R. L. Wilder, Monotone mappings of manifolds, Pacific J. Math. 7 (1957), 1519 – 1528. · Zbl 0086.37302
[256] R. L. Wilder, Monotone mappings of manifolds. II, Michigan Math. J. 5 (1958), 19 – 23. · Zbl 0087.38302
[257] R. L. Wilder, Some mapping theorems with applications to non-locally connected spaces, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 378 – 388. · Zbl 0078.15103
[258] David C. Wilson, On constructing monotone and \?\?\textonesuperior mappings of arbitrary degree, Duke Math. J. 41 (1974), 103 – 109. · Zbl 0305.57010
[259] Alden Wright, Mappings from 3-manifolds onto 3-manifolds, Trans. Amer. Math. Soc. 167 (1972), 479 – 495. · Zbl 0249.57002
[260] Alden H. Wright, Monotone mappings and degree one mappings between \?\? manifolds, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 441 – 459. Lecture Notes in Math., Vol. 438.
[261] Perrin Wright, Radial engulfing in codimension three, Duke Math. J. 38 (1971), 295 – 298. · Zbl 0217.20102
[262] E. C. Zeeman, The topology of Minkowski space, Topology 6 (1966), 161 – 170. · Zbl 0149.41204
[263] E. C. Zeeman, On the dunce hat, Topology 2 (1964), 341 – 358. · Zbl 0116.40801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.