×

zbMATH — the first resource for mathematics

Homotopy in homeomorphism spaces, TOP and PL. (English) Zbl 0277.57004

MSC:
57N35 Embeddings and immersions in topological manifolds
57-02 Research exposition (monographs, survey articles) pertaining to manifolds and cell complexes
58D10 Spaces of embeddings and immersions
57Q35 Embeddings and immersions in PL-topology
57Q55 Approximations in PL-topology
57S05 Topological properties of groups of homeomorphisms or diffeomorphisms
55Q99 Homotopy groups
PDF BibTeX Cite
Full Text: DOI
References:
[1] Tadatoshi Akiba, On the homotopy type of \?\?\(_{2}\), J. Fac. Sci. Univ. Tokyo Sect. I 14 (1967), 197 – 204. · Zbl 0167.21501
[2] Tadatoshi Akiba, Homotopy types of some \?\? complexes, Bull. Amer. Math. Soc. 77 (1971), 1060 – 1062. · Zbl 0227.57008
[3] J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 406-407.
[4] R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 465 – 483. · Zbl 0079.38805
[5] R. H. Bing, An alternative proof that 3-manifolds can be triangulated, Ann. of Math. (2) 69 (1959), 37 – 65. · Zbl 0106.16604
[6] William Browder, Open and closed disk bundles, Ann. of Math. (2) 83 (1966), 218 – 230. · Zbl 0148.17503
[7] Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113 – 115. , https://doi.org/10.1090/S0002-9904-1960-10420-X Morton Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74 – 76.
[8] J. C. Cantrell and T. B. Rushing, On low-codimensional taming, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 353 – 357. · Zbl 0285.57011
[9] A. V. Černavskiĭ, Local contractibility of the group of homeomorphisms of a manifold., Mat. Sb. (N.S.) 79 (121) (1969), 307 – 356 (Russian).
[10] A. V. Černavskiĭ, Topological embeddings of manifolds, Dokl. Akad. Nauk SSSR 187 (1969), 1247 – 1250 (Russian).
[11] E. H. Connell, Approximating stable homeomorphisms by piecewise linear ones, Ann. of Math. (2) 78 (1963), 326 – 338. · Zbl 0116.14802
[12] Robert Craggs, Building Cartesian products of surfaces with [0,1], Trans. Amer. Math. Soc. 144 (1969), 391 – 425. · Zbl 0188.28702
[13] Robert Craggs, Small ambient isotopies of a 3-manifold which transform one embedding of a polyhedron into another, Fund. Math. 68 (1970), 225 – 256. · Zbl 0197.20301
[14] Robert D. Edwards and Robion C. Kirby, Deformations of spaces of imbeddings, Ann. Math. (2) 93 (1971), 63 – 88. · Zbl 0214.50303
[15] Robert D. Edwards, The equivalence of close piecewise linear embeddings, General Topol. Appl. 5 (1975), 147 – 180. · Zbl 0314.57009
[16] Bjorn Friberg, A topological proof of a theorem of Kneser, Proc. Amer. Math. Soc. 39 (1973), 421 – 426. · Zbl 0273.57017
[17] David B. Gauld, The canonical Schoenflies theorem, Proc. Amer. Math. Soc. 27 (1971), 603 – 612. · Zbl 0212.56104
[18] P. R. Hall, On the space of homeomorphisms of \?³, Bull. Amer. Math. Soc. 75 (1969), 788 – 789. · Zbl 0182.25701
[19] Eldon Dyer and Mary-Elizabeth Hamstrom, Completely regular mappings, Fund. Math. 45 (1957), 103-118. MR 19, 1187. · Zbl 0083.38704
[20] Mary-Elizabeth Hamstrom and Eldon Dyer, Regular mappings and the space of homeomorphisms on a 2-manifold, Duke Math. J. 25 (1958), 521 – 531. · Zbl 0116.39903
[21] Mary-Elizabeth Hamstrom, Regular mappings whose inverses are 3-cells, Amer. J. Math. 82 (1960), 393 – 429. · Zbl 0116.39904
[22] Mary-Elizabeth Hamstrom, Regular mappings and the space of homeomorphisms on a 3-manifold, Mem. Amer. Math. Soc. No. 40 (1961), 42. · Zbl 0116.39905
[23] Mary-Elizabeth Hamstrom, Some global properties of the space of homeomorphisms on a disc with holes, Duke Math. J. 29 (1962), 657 – 662.
[24] Mary-Elizabeth Hamstrom, The space of homeomorphisms on a torus, Illinois J. Math. 9 (1965), 59 – 65. · Zbl 0127.13505
[25] Mary-Elizabeth Hamstrom, Homotopy properties of the space of homeomorphisms on \?² and the Klein bottle, Trans. Amer. Math. Soc. 120 (1965), 37 – 45. · Zbl 0148.17201
[26] Mary-Elizabeth Hamstrom, Homotopy groups of the space of homeomorphisms on a 2-manifold, Illinois J. Math. 10 (1966), 563 – 573. · Zbl 0151.33002
[27] Mary-Elizabeth Hamstrom, Regular mappings: A survey, Proc. First Conf. on Monotone Mappings and Open Mappings (SUNY at Binghamton, Binghamton, N.Y., 1970) State Univ. of New York at Binghamton, Binghamton, N.Y., 1971, pp. 238 – 254.
[28] Mary-Elizabeth Hamstrom, Completely regular mappings whose inverses have \?\?\(^{0}\) homeomorphism group: A correction, Proc. First Conf. on Monotone Mappings and Open Mapings (SUNY at Binghamton, Binghamton, N.Y., 1970) State Univ. of New York at Binghamton, Binghamton, N.Y., 1971, pp. 255 – 260.
[29] William E. Haver, Function spaces on manifolds, Notices Amer. Math. Soc. 19 (1972), A803. Abstract #699-G4.
[30] J. F. P. Hudson and E. C. Zeeman, On combinatorial isotopy, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 69 – 94. · Zbl 0136.21201
[31] John F. P. Hudson, Extending piecewise-linear isotopies, Proc. London Math. Soc. (3) 16 (1966), 651 – 668. · Zbl 0141.40802
[32] J. F. P. Hudson, Piecewise linear topology, University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees, W. A. Benjamin, Inc., New York-Amsterdam, 1969. · Zbl 0189.54507
[33] William Huebsch and Marston Morse, The dependence of the Schoenflies extension on an accessory parameter (the topological case), Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1036 – 1037. · Zbl 0117.40501
[34] Marvin Israel, Dissertation, University of Illinois at Urbana-Champaign (in preparation).
[35] Robion C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. (2) 89 (1969), 575 – 582. · Zbl 0176.22004
[36] Robion C. Kirby, Lectures on triangulations of manifolds, mimeographed notes, UCLA, 1969.
[37] J. M. Kister, Isotopies in 3-manifolds, Trans. Amer. Math. Soc. 97 (1960), 213 – 224. · Zbl 0096.37906
[38] J. M. Kister, Microbundles are fibre bundles, Ann. of Math. (2) 80 (1964), 190 – 199. · Zbl 0131.20602
[39] Hellmuth Kneser, Die Deformationssätze der einfach zusammenhängenden Flächen, Math. Z. 25 (1926), no. 1, 362 – 372 (German). · JFM 52.0573.01
[40] N. H. Kuiper and R. K. Lashof, Microbundles and bundles. II. Semisimplical theory, Invent. Math. 1 (1966), 243 – 259. · Zbl 0142.22001
[41] A. I. Markuševič, Teoriya analitičeskih funkciĭ, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad,], 1950 (Russian).
[42] J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. · Zbl 0769.55001
[43] G. S. McCarty Jr., Homeotopy groups, Trans. Amer. Math. Soc. 106 (1963), 293 – 304. · Zbl 0113.17201
[44] Ernest Michael, Continuous selections. III, Ann. of Math. (2) 65 (1957), 375 – 390. · Zbl 0088.15003
[45] E. E. Moise, Affine structures in 3-manifolds. IV, V. Piecewise linear approximations of homeomorphisms, The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 55 (1952), 215-222; ibid. 56 (1952), 96-114. MR 13, 765; 14, 72. · Zbl 0047.16804
[46] C. Morlet, Plongements et automorphismes des variétés, Mimeographed notes, Collège de France, 1969.
[47] H. R. Morton, The space of homeomorphisms of a disc with \? holes, Illinois J. Math. 11 (1967), 40 – 48. · Zbl 0142.21702
[48] Louis V. Quintas, The homotopy groups of the space of homeomorphisms of a multiply punctured surface, Illinois J. Math. 9 (1965), 721 – 725. · Zbl 0134.19302
[49] Louis V. Quintas, Solved and unsolved problems in the computation of homeotopy groups of 2-manifolds, Trans. N.Y. Acad. Sci. Ser. II 30 (1968), 919-938. · Zbl 0307.57015
[50] J. H. Roberts, Local arcwise connectivity in the space H, Summary of lectures and seminars, Summer Institute on Set Theoretic Topology, Madison, Wisconsin, 1955, revised 1958, 110.
[51] C. P. Rourke and B. J. Sanderson, Block bundles. I, Ann. of Math. (2) 87 (1968), 1 – 28. , https://doi.org/10.2307/1970591 C. P. Rourke and B. J. Sanderson, Block bundles. II. Transversality, Ann. of Math. (2) 87 (1968), 256 – 278. · Zbl 0215.52301
[52] T. Benny Rushing, Topological embeddings, Academic Press, New York-London, 1973. Pure and Applied Mathematics, Vol. 52. · Zbl 0295.57003
[53] D. E. Sanderson, Isotopy in 3-manifolds. II. Fitting homeomorphisms by isotopy, Duke Math. J. 26 (1959), 387 – 396. · Zbl 0086.37704
[54] G. P. Scott, The space of homeomorphisms of a 2-manifold, Topology 9 (1970), 97 – 109. · Zbl 0174.26305
[55] G. P. Scott, On the homotopy type of PL3, mimeographed, University of Liverpool, 1970.
[56] C. L. Seebeck III, Collaring and (\?-1)-manifold in an \?-manifold, Trans. Amer. Math. Soc. 148 (1970), 63 – 68. · Zbl 0194.55702
[57] Neal R. Wagner, The space of retractions of the 2-sphere and the annulus, Trans. Amer. Math. Soc. 158 (1971), 319 – 329. · Zbl 0218.54004
[58] Paul A. White, Regular convergence, Bull. Amer. Math. Soc. 60 (1954), 431 – 443. · Zbl 0059.16304
[59] Hassler Whitney, Regular families of curves, Ann. of Math. (2) 34 (1933), no. 2, 244 – 270. · Zbl 0006.37101
[60] G. T. Whyburn, On sequences and limiting sets, Fund. Math. 25 (1935), 408-426. · JFM 61.0621.04
[61] Perrin Wright, Covering isotopies of \?\(^{n}\)\(^{-}\)\textonesuperior in \?\(^{n}\), Proc. Amer. Math. Soc. 29 (1971), 591 – 598. · Zbl 0216.20102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.