×

Numerical bifurcation and stability analysis of solitary pulses in an excitable reaction-diffusion medium. (English) Zbl 0941.65131

The authors present a systematic, computer-assisted study of the bifurcations and instabilities of solitary pulses in an excitable medium capable of displaying both stable pulse propagation and spatiotemporally chaotic dynamics over intervals of parameter space. The reaction-diffusion model used is of the activator-inhibitor type; only the activator diffuses in this medium. The control parameters are the ratio of time scales of the activator and inhibitor dynamics and the excitation threshold. This study focuses on travelling pulses, their domain of existence and the bifurcations that render them unstable. These pulses are approximated as: (a) homoclinic orbits in a travelling wave ordinary differential equation (ODE) frame; and (b) as solutions of the full partial differential equation (PDE) with periodic boundary conditions in large domains.
A variety of bifurcations in the travelling wave ODE frame are observed (including heteroclinic loops, so-called T-points [cf. A. R. Champneys and Yu. A. Kuznetsov, Int. J. Bifurcation Chaos Appl. Sci. Eng. 4, No. 4, 785-822 (1994; Zbl 0873.34030); H. Kokobu, Japan J. Appl. Math. 5, No. 3, 455-501 (1988; Zbl 0668.34039)]). Instabilities in the full PDE frame include both Hopf bifurcations to modulated travelling waves (involving the discrete pulse spectrum) as well as transitions involving the continuous spectrum (such as the so-called ‘backfiring’ transition [cf. M. Bär, M. Eiswirth, M. Falcke, H. Engel and M. Neufeld, Chemical turbulence and standing waves in a surface reaction model: The influence of global coupling and wave instabilities, Chaos 4, 499 (1994)]). The stability of modulated pulses is computed through numerical Floquet analysis and a cascade of period doubling bifurcations is observed, as well as certain global bifurcations. These results, corroborated by observations from direct numerical integration, provide a ‘skeleton’ around which many features of the overall complex spatiotemporal dynamics of the PDE are organized.

MSC:

65P30 Numerical bifurcation problems
37K45 Stability problems for infinite-dimensional Hamiltonian and Lagrangian systems
37K50 Bifurcation problems for infinite-dimensional Hamiltonian and Lagrangian systems
65P20 Numerical chaos
37M20 Computational methods for bifurcation problems in dynamical systems
35K57 Reaction-diffusion equations
65P40 Numerical nonlinear stabilities in dynamical systems
80A32 Chemically reacting flows

Software:

AUTO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cross, M. C.; Hohenberg, P. C., Pattern formation outside of equilibrium, Rev. Mod. Phys., 65, 851 (1993) · Zbl 1371.37001
[2] (Kapral, R.; Showalter, K., Chemical Waves and Patterns (1995), Kluwer, Dordrecht: Kluwer, Dordrecht New York, USA)
[3] Mikhailov, A. S., Foundations of Synergetics I (1990), Springer-Verlag: Springer-Verlag The Netherlands · Zbl 0712.92001
[4] (Engel, H.; Niedernostheide, F.-J.; Purwins, H.-G.; Schöll, E., Self Organisation in Activator-Inhibitor Systems: Semiconductors, Gas-Discharge and Chemical Active Media (1996), Wissenschaft und Technik Verlag: Wissenschaft und Technik Verlag Berlin)
[5] Winfree, A. T., Varieties of spiral wave behaviour: An experimentalist’s approach to the theory of excitable media, Chaos, 1, 303 (1991) · Zbl 1031.76502
[6] Tyson, J. J.; Keener, J. P., Singular perturbation theory of travelling waves in excitable media, Physica D, 32, 327 (1988) · Zbl 0656.76018
[7] Martiel, J.-L.; Goldbeter, A., A model based on receptor desensitization for cyclic AMP signaling in Dictyostelium cells, Biophys. J., 52, 897 (1987) · Zbl 0632.92008
[8] Meron, E., Pattern formation in excitable media, Phys. Rep., 218, 1 (1992)
[9] Bär, M.; Gottschalk, N.; Eiswirth, M.; Ertl, G., Spiral waves in a surface reaction: Model Calculations, J. Chem. Phys., 100, 1202 (1994)
[10] Bär, M.; Hildebrand, M.; Eiswirth, M.; Falcke, M.; Engel, H.; Neufeld, M., Chemical turbulence and standing waves in a surface reaction model: The influence of global coupling and wave instabilities, Chaos, 4, 499 (1994)
[11] Zimmermann, M. G.; Firle, S. O.; Natiello, M. A.; Hildebrand, M.; Eiswirth, M.; Bär, M.; Bangia, A. K.; Kevrekidis, I. G., Pulse bifurcation and transition to spatiotemporal chaos in an excitable reaction—diffusion model, Physica D, 110, 290 (1997) · Zbl 0925.35084
[12] Kness, M.; Tuckerman, L.; Barkley, D., Symmetry breaking bifurcations in one-dimensional excitable media, Phys. Rev. A, 46, 5054 (1992)
[13] Champneys, A. R.; Kuznetsov, Y. A., Numerical detection and continuation of codimension-2 homoclinic bifurcations, Int. J. Bif. Chaos, 4, 785 (1994) · Zbl 0873.34030
[14] Kokubu, H., Homoclinic and heteroclinic bifurcations of vectorfields, Japan J. Appl. Math., 5, 455 (1988) · Zbl 0668.34039
[15] Sandstede, B.; Jones, C. K.R. T.; Alexander, J. C., Existence and stability of N-pulses on optical fibers with phase-sensitive amplifiers, Physica D, 106, 167 (1997) · Zbl 0938.35184
[16] Zimmermann, M. G.; Natiello, M. A., Global homoclinic and heteroclinic bifurcations close to a twisted heteroclinic cycle, Int. J. Bif. Chaos, 8 (1998) · Zbl 0933.37054
[17] Graham, M. D.; Kevrekidis, I. G.; Asakura, K.; Lauterbach, J.; Krischer, K.; Rotermund, H.-H.; Ertl, G., Effects of Boundaries on Pattern Formation: Catalytic Oxidation of CO on Platinum, Science, 264, 80 (1994)
[18] Evans, J. W., Nerve axon equations: 1—Linear approximations; 2—Stability at rest; 3—Stability of the nerve impulse, Indiana Univ. Math. Jour., 22, 577 (1972) · Zbl 0245.92004
[19] Pego, R. L.; Weinstein, M. I., Eigenvalues and instabilities of solitary waves, Phil. Trans. R. Soc. Lond. A, 340, 47 (1992) · Zbl 0776.35065
[20] Chang, H.-C.; Demekhin, E. A.; Kopelevich, D. L., Local stability theory of solitary pulses in an active medium, Physica D, 97, 353 (1996) · Zbl 1194.37049
[21] Chang, H.-C.; Demekhin, E. A.; Kopelevich, D. J., Laminarizing effects of dispersion in an active-dissipative nonlinear medium, Physica D, 63, 299 (1993) · Zbl 0797.35142
[22] Krischer, K.; Eiswirth, M.; Ertl, G., Oscillatory CO Oxidation on Pt(110): Modeling of temporal self-organization, J. Chem. Phys., 96, 9161 (1992)
[23] Bär, M.; Eiswirth, M., Turbulence due to spiral wave breakup in a continuous excitable medium, Phys. Rev. E, 48, R1635 (1993)
[24] Hildebrand, M.; Bär, M.; Eiswirth, M., Statistics of topological defects and spatiotemporal chaos in a reaction diffusion system, Phys. Rev. Lett., 75, 1503 (1995)
[25] Merkin, J. H.; Petrov, V.; Scott, S. K.; Showalter, K., Wave-induced chemical chaos, Phys. Rev. Lett., 76, 546 (1996)
[26] Karma, A., Electrical Alternans and spiral wave breakup in cardiac tissue, Chaos, 4, 461 (1994)
[27] Bykov, V. V., The bifurcations of separatrix contours and chaos, Physica D, 62, 290 (1993) · Zbl 0799.58054
[28] Glendinning, P.; Sparrow, C., T-points: A codimension two heteroclinic bifurcation, J. Stat. Phys., 43, 479 (1986) · Zbl 0635.58031
[29] Yanagida, E., Branching of double pulse solutions from single pulse solutions in nerve axon equations, J. Diff. Eq., 66, 243 (1987) · Zbl 0661.35003
[30] Kisaka, M.; Kokubu, H.; Oka, H., Bifurcations to N-homoclinic orbits and N-periodic orbits in vector fields, J. Dyn. Diff. Eqs., 5, 305 (1993) · Zbl 0784.34038
[31] Chow, S.-N.; Deng, B.; Terman, D., The bifurcation of homoclinic orbits from two heteroclinic orbits—A topological approach, Appl. Anal., 42, 275 (1992) · Zbl 0758.35043
[32] Chow, S.-N.; Deng, B.; Terman, D., The bifurcation of homoclinic and periodic orbits from two heteroclinic orbits, SIAM J. Math. Anal., 21, 179 (1990) · Zbl 0693.34055
[33] Pego, R. L.; Smereka, P.; Weinstein, M. I., Oscillatory instability of travelling waves for a KdV-Burgers equation, Physica D, 67, 45-65 (1993) · Zbl 0787.76031
[34] Brown, H. S.; Kevrekidis, I. G., Modulated travelling waves in the Kuramoto Sivashinsky equation, Fields Institute Comm., 5, 45 (1996) · Zbl 0846.35012
[35] Balmforth, N. J.; Ireley, G. R.; Worthing, R., Pulse dynamics in an unstable medium, SIAM J. Appl. Math., 57, 205 (1997) · Zbl 0979.35120
[36] Balmforth, N. J., Solitary waves and homoclinic orbits, Ann. Rev. Fluid Mech., 27, 335 (1995)
[37] Lin, X.-B., On using Melnikov’s method for solving Silnikov’s problem, Trans. Roy. Soc. Edinbrg., 116A, 195 (1990)
[38] Yanagida, E.; Maginu, K., Stability of double-pulse solutions in nerve axon equations, SIAM J. Appl. Math., 49, 1 (1989) · Zbl 0691.35052
[39] Sandstede, B., Stability of multiple pulse solutions, Trans. Am. Math. Soc., 350, 1 (1997)
[40] Sandstede, B., Stability of N-fronts bifurcating from a twisted heteroclinic loop and an application to the Fitzhugh—Nagumo equation, SIAM J. Math. Anal., 29, 183 (1997) · Zbl 0914.34050
[41] [41]; [41]
[42] Hartmann, N., Zur oszillatorischen Dynamik der an Platinmetallen katalysierten Oxidation von Kohlenmonoxid mit Sauerstoff und Stickstoffmonoxid, (Ph.D. Thesis (1997), Free University: Free University Berlin)
[43] Doedel, E. J.; Wang, X. J.; Fairgrieve, T. F., AUTO 94: Software for continuation and bifurcation in ordinary differential equations, (Applied Mathematics Report (1994), California Institute of Technology: California Institute of Technology Berlin)
[44] [44]; [44]
[45] Champneys, A.; Kuznetsov, Y.; Sandstede, B., A numerical toolbox for homclinic bifurcation analysis, Int. J. Bif. Chaos, 6, 867 (1996) · Zbl 0877.65058
[46] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1988), Springer-Verlag · Zbl 0658.76001
[47] Bangia, A. K., Instabilities and pattern formation in heterogeneous catalysis and fluid flow, (Ph.D. Thesis (1996), Princeton University: Princeton University Berlin)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.