×

On an inverse type problem for the heat equation in parabolic regular graph domains. (English) Zbl 1263.35219

The author proves some blow-up properties associated with the regularity of domains in the free boundary problem for the heat equation in parabolic regular graph domains. He also corrects some confusing statements in his previous paper [Indiana Univ. Math. J. 55, No. 4, 1233–1290 (2006; Zbl 1141.35033)].

MSC:

35R35 Free boundary problems for PDEs
35K05 Heat equation
35B44 Blow-up in context of PDEs

Citations:

Zbl 1141.35033
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Alt H.W., Caffarelli L.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144 (1981) · Zbl 0449.35105
[2] Athanasopoulos I., Caffarelli L., Salsa S.: Regularity of the free boundary in parabolic phase transition problems. Acta Math. 176, 245–282 (1996) · Zbl 0891.35164 · doi:10.1007/BF02551583
[3] Athanasopoulos I., Caffarelli L., Salsa S.: Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems. Ann. Math. 143(1), 463–484 (1996) · Zbl 0853.35049 · doi:10.2307/2118531
[4] Andersson J., Weiss G.: A parabolic free boundary problem with Bernoulli type condition on the free boundary. J. Reine Angew. Math. 627, 213–235 (2009) · Zbl 1171.35128
[5] Caffarelli L.A.: A Harnack inequality approach to the regularity of free boundaries. Part 1 : Lipschitz free boundaries are C 1, {\(\alpha\)}. Rev. Mat. Iberoam. 3, 139–162 (1987) · Zbl 0676.35085 · doi:10.4171/RMI/47
[6] Caffarelli L.A.: A Harnack inequality approach to the regularity of free boundaries. Part 2 : Flat free boundaries are Lipschitz. Comm. Pure Appl. Math. 42, 55–78 (1989) · Zbl 0676.35086 · doi:10.1002/cpa.3160420105
[7] Caffarelli L.A., Lederman C., Wolanski N.: Pointwise and viscosity solutions for the limit of a two phase parabolic singular perturbation problem. Indiana Univ. Math. J. 46, 719–740 (1997) · Zbl 0909.35013
[8] Caffarelli L.A., Lederman C., Wolanski N.: Uniform estimates and limits for a two phase parabolic singular perturbation problem. Indiana Univ. Math. J. 46, 453–489 (1997) · Zbl 0909.35012
[9] DiBenedetto, E.: Degenerate Parabolic Equations. Springer-Verlag (1993) · Zbl 0794.35090
[10] Dahlberg B.: On estimates of harmonic measure. Arch. Ration. Mech. Anal. 65, 275–288 (1977) · Zbl 0406.28009 · doi:10.1007/BF00280445
[11] Doob, J.L.: Classical potential theory and its probablilistic counterpart. Springer-Verlag, Grundlehren der Mathematischen Wissenschaften 262 (1984) · Zbl 0549.31001
[12] Fabes E., Safonov M.: Behaviour near the boundary of positive solutions of second order parabolic equations. J. Fourier Anal. Appl. 3, 871–882 (1997) · Zbl 0939.35082 · doi:10.1007/BF02656492
[13] Fabes E., Safonov M., Yuan Y.: Behaviour near the boundary of positive solutions of second order parabolic equations II. Trans. Am. Math. Soc. 351, 4947–4961 (1999) · Zbl 0976.35031 · doi:10.1090/S0002-9947-99-02487-3
[14] Garnett J.B., Jones P.W.: The distance in BMO to L Ann. Math. 108, 373–393 (1978) · Zbl 0383.26010 · doi:10.2307/1971171
[15] Garcia-Cuerva, J., de Rubio Francia, J.L.: Weighted norm inequalities and related topics, N.-Holl. Math. Studies 116 (1985)
[16] Hofmann S.: Parabolic singular integrals of Calderón type, rough operators, and caloric layer potentials. Duke Math. J. 90, 209–259 (1997) · Zbl 0941.42006 · doi:10.1215/S0012-7094-97-09008-6
[17] Hofmann S., Lewis J.: Solvability and representation by caloric layer potentials in time-varying domains. Ann. Math. 144, 349–420 (1996) · Zbl 0867.35037 · doi:10.2307/2118595
[18] Hofmann S., Lewis J., Nyström K.: Existence of big pieces of graphs for parabolic problems. Ann. Acad. Sci. Fenn. Math. 28, 355–384 (2003) · Zbl 1046.35045
[19] Hofmann S., Lewis J., Nyström K.: Caloric measure in parabolic flat domains. Duke Math. J. 122, 281–345 (2004) · Zbl 1074.35041 · doi:10.1215/S0012-7094-04-12222-5
[20] Jerison D., Kenig C.: The logarithm of the Poisson kernel in a C 1 domain has vanishing mean oscillation. Trans. Am. Math. Soc. 273, 781–794 (1982) · Zbl 0494.31003
[21] Kenig C., Toro T.: Harmonic measure on locally flat domains. Duke Math. J. 87, 501–551 (1997) · Zbl 0878.31002 · doi:10.1215/S0012-7094-97-08717-2
[22] Kenig C., Toro T.: Free boundary regularity for harmonic measure and Poisson kernels. Ann. Math. 150, 369–454 (1999) · Zbl 0946.31001 · doi:10.2307/121086
[23] Kenig C., Toro T.: Poisson kernel characterization of Reifenberg flat chord arc domains. Ann. Sci. Ecole Norm. Sup. 36(4), 323–401 (2003) · Zbl 1027.31005
[24] Kenig C., Toro T.: Free boundary regularity below the continuous threshold: 2-phase problems. J. Reine Angew. Math. 596, 1–44 (2006) · Zbl 1106.35147 · doi:10.1515/CRELLE.2006.050
[25] Kaufmann R., Wu J.M.: Parabolic measure on domains of class Lip1/2. Compos. Math. 65, 201–207 (1988)
[26] Lewis J.: On symmetry and uniform rectifiability arising from some overdetermined elliptic and parabolic boundary conditions. Contemp. Math. 170, 175–187 (2005) · Zbl 1134.35403 · doi:10.1090/conm/370/06835
[27] Lewis, J., Murray, M.: The method of layer potentials for the heat equation in time-varying domains. Mem. Am. Math. Soc. 114, no. 545 (1995) · Zbl 0826.35041
[28] Lewis J., Nyström K.: On a parabolic symmetry problem. Rev. Mat. Iberoam. 23, 513–536 (2007) · Zbl 1242.35130 · doi:10.4171/RMI/504
[29] Lewis J., Nyström K.: Regularity and Free Boundary Regularity for the p-Laplacian in Lipschitz and C 1-domains. Ann. Acad. Sci. Fenn. Math. 33, 523–548 (2008) · Zbl 1202.35110
[30] Lewis, J., Nyström, K.: Regularity of lipschitz free boundaries in two-phase problems for the p-Laplace operator, to appear in Advances in Mathematics · Zbl 1200.35335
[31] Lewis, J., Nyström, K.: Regularity of flat free boundaries in two-phase problems for the p-Laplace operator, submitted · Zbl 1241.35221
[32] Lewis, J., Nyström, K.: Regularity and free boundary regularity for the p-Laplace operator in Reifenberg flat and Ahlfors regular domains, in preparation · Zbl 1250.35084
[33] Lewis J., Silver J.: Parabolic measure and the Dirichlet problem for the heat equation in two dimensions. Indiana Univ. Math. J. 37, 801–839 (1988) · Zbl 0698.35068 · doi:10.1512/iumj.1988.37.37039
[34] Nyström K.: The Dirichlet problem for second order parabolic operators. Indiana Univ. Math. J. 46, 183–245 (1997) · Zbl 0878.35010 · doi:10.1512/iumj.1997.46.1277
[35] Nyström K.: Caloric Measure and Reifenberg Flatness. Ann. Acad. Sci. Fenn. Math. 31, 405–436 (2006) · Zbl 1101.35037
[36] Nyström K.: Regularity Below the Continuous Threshold in a Two-phase Parabolic Free Boundary Problem. Math. Scand. 99, 257–286 (2006) · Zbl 1146.35098
[37] Nyström K.: On Blow-ups and the Classification of Global Solutions to Parabolic Free Boundary Problems. Indiana Univ. Math. J. 55, 1233–1290 (2006) · Zbl 1141.35033 · doi:10.1512/iumj.2006.55.2797
[38] Stein E.: Harmonic Analysis. Princeton University press, Princeton (1993) · Zbl 0821.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.