×

Adapting nodes in three dimensional irregular regions for meshless-type methods. (English) Zbl 1251.65165

Summary: A new adaptive nodes technique based on equi-distribution principles and dimension reduction is presented for irregular regions in three dimensional cases. The mesh generation is performed by first producing some adaptive nodes in a cube based on equi-distribution along the coordinate axes and then transforming the generated nodes to the physical domain followed by a refinement process. The mesh points produced are appropriate for meshless-type methods which need only some scattered points rather than a mesh with some smoothness properties. The effectiveness of the generated mesh points is examined by a collocation meshless method using a well known radial basis function, namely \(\phi (r) = r^5\) which is sufficiently smooth for our purpose. Some experimental results will be presented to illustrate the effectiveness of the proposed method.

MSC:

65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beckett, G., Mackenzie, J.A., Ramage, A., Sloan, D.M.: On the numerical solution of one-dimensional PDEs using adaptive methods based on equi-distribution. J. Comput. Phys. 167(2), 372–392 (2001) · Zbl 0985.65097 · doi:10.1006/jcph.2000.6679
[2] Choi, Y., Know, K.Y., Chae, S.W., Kim, D.M.: A modified advancing layers mesh generation for thin three-dimensional objects with variable thickness. Comput. Graph. 33(3), 195–203 (2009) · doi:10.1016/j.cag.2009.03.006
[3] Cao, W., Huang, W., Russell, R.D.: A study of monitor functions for two-dimensional adaptive mesh generation. SIAM J. Sci. Comput. 20(6), 1978–1994 (1999) · Zbl 0937.65104 · doi:10.1137/S1064827597327656
[4] Carey, G.F., Dinh, H.T.: Grading functions and mesh redistribution. SIAM J. Numer. Anal. 22(5), 1028–1040 (1985) · Zbl 0577.65076 · doi:10.1137/0722061
[5] Carey, G.F., Humphrey, D.L.: Mesh refinement and iterative solution methods for finite element computations. Int. J. Numer. Methods Eng. 17(11), 1717–1734 (2005) · Zbl 0469.73056 · doi:10.1002/nme.1620171110
[6] Chen, C.S., Ganesh, M., Golberg, M.A., Cheng, A.H.D.: Multi-level compact radial functions based computational schemes for some elliptic problems. Comput. Math. Appl. 43(3), 359–378 (2002) · Zbl 0999.65143 · doi:10.1016/S0898-1221(01)00292-9
[7] Chen, K.: Two-dimensional adaptive quadrilateral mesh generation. Commun. Numer. Methods Eng. 10(10), 815–825 (1994) · Zbl 0812.65105 · doi:10.1002/cnm.1640101008
[8] Chen, K.: Error equidistribution and mesh adaptation. SIAM J. Sci. Comput. 15(4), 798–818 (1994) · Zbl 0806.65090 · doi:10.1137/0915050
[9] De Boor, C.: In good approximation by splines with variable knots II. Lecture Notes Series, vol. 363. Springer, Berlin (1973) · Zbl 0255.41007
[10] Duchon, J.: Spline minimizing rotation-invariant semi-norms in Sobolev spaces. In: Schempp, W., Zeller, K. (eds.) Constructive Theory of Function of Several Variables. Lecture Notes in Mathematics, vol. 571, pp. 85–100. Springer, Berlin (1977)
[11] Fasshauer, G.E.: Solving partial differential equations with radial basis function: multi-level methods and smoothing. Adv. Comput. Math. 11, 139–159 (1999) · Zbl 0940.65122 · doi:10.1023/A:1018919824891
[12] Fasshauer, G.E.: Newton iteration with multiquadrics for the solution of PDEs. Comput. Math. Appl. 43, 423–438 (2002) · Zbl 0999.65136 · doi:10.1016/S0898-1221(01)00296-6
[13] Hardy, R.L.: Theory and applications of the multiquadrics-biharmonic method: 20 years of discovery. Comput. Math. Appl. 19(8/9), 163–208 (1990) · Zbl 0692.65003 · doi:10.1016/0898-1221(90)90272-L
[14] Kansa, E.J.: Multiquadrics–a scattered data approximation scheme with applications to computational fluid dynamics- part I. Comput. Math. Appl. 19(8/9), 147–161 (1990) · Zbl 0850.76048 · doi:10.1016/0898-1221(90)90271-K
[15] Kansa, E.J.: Multiquadrics–a scattered data approximation scheme with applications to computational fluid dynamics–part II. Comput. Math. Appl. 19(8/9), 147–161 (1990) · Zbl 0850.76048 · doi:10.1016/0898-1221(90)90271-K
[16] Kansa, E.J., Hon, Y.C.: Circunventing the ill-conditioning problem with multiquadric radial basis functions. Comput. Math. Appl. 39(7/8), 123–137 (2000) · Zbl 0955.65086 · doi:10.1016/S0898-1221(00)00071-7
[17] Kautsky, J., Nichols, N.K.: Equi-distributing meshes with constraints. SIAM J. Sci. Statist. Comput. 1(4), 449–511 (1980) · Zbl 0468.76016 · doi:10.1137/0901033
[18] Kopteva, N., Madden, N., Stynes, M.: Grid equidistribution for reactiondiffusion problems in one dimension. Numer. Algorithms 40, 305–322 (2005) · Zbl 1089.65077 · doi:10.1007/s11075-005-7079-6
[19] Powell, M.J.D.: The theory of radial basis function approximation in 1990. In: Light, W.A. (ed.) Advances in Numerical Analysis, vol. 2: Wavelets, Subdivision-algorithms and Radial Basis Functions, pp. 105–210. Oxford Univ. Press (1992) · Zbl 0787.65005
[20] Shanazari, K., Chen, K.: An overlapping domain decomposition for the dual reciprocity method. Eng. Anal. Bound. Elem. 27, 945–953 (2003) · Zbl 1050.65126 · doi:10.1016/S0955-7997(03)00072-9
[21] Shanazari, K., Chen, K.: A minimal distance constrained adaptive mesh algorithm with application to the dual reciprocity method. Numer. Algorithms 32, 275–286 (2003) · Zbl 1029.65132 · doi:10.1023/A:1024027723984
[22] Shanazari, K., Fallahi, M.: A quasi-linear method applied to the method of fundamental solution. Eng. Anal. Bound. Elem. 34, 388–392 (2010) · Zbl 1244.65223 · doi:10.1016/j.enganabound.2009.11.002
[23] Shanazari, K., Hosami, M.: A two dimensional adaptive nodes technique in irregular regions applied to meshless-type methods. Eng. Anal. Bound. Elem. 36, 161–168 (2012) · Zbl 1245.74100 · doi:10.1016/j.enganabound.2011.07.004
[24] Shanazari, K., Rabie, N.: A three dimensional adaptive nodes technique applied to meshless-type methods. Appl. Numer. Math. 59, 1187–1197 (2009) · Zbl 1162.65056 · doi:10.1016/j.apnum.2008.06.003
[25] Shishkina, O., Wagner, C.: Adaptive meshes for simulations of turbulent Rayleigh-Benard convection. J. Numer. Anal. Indust. Appl. Math. 1(2), 219–228 (2006) · Zbl 1125.76050
[26] Sweby, P.K.: Data-dependent grids. Numerical Analysis Report 7/87, University of Reading, UK (1987)
[27] Wong, H., Qin, Q.H.: A meshless method for generalized linear or nonlinear Poisson-type problems. Eng. Anal. Bound. Elem. 30(6), 515–521 (2006) · Zbl 1195.65180 · doi:10.1016/j.enganabound.2006.01.009
[28] Wong, S.M., Hon, Y.C., Li, T.S.: A meshless multilayer model for a coastal system by radial basis functions. Comput. Math. Appl. 43, 585–605 (2002) · Zbl 1073.86501 · doi:10.1016/S0898-1221(01)00306-6
[29] White, A.B.: On selection of equi-distribution meshes for two-point boundary value problems. SIAM J. Numer. Anal. 16(3), 472–502 (1979) · Zbl 0407.65036 · doi:10.1137/0716038
[30] Winslow, A.M.: Numerical solution of the quasi-linear Poisson’s equation in a non-uniform triangle mesh. J. Comput. Phys. 1(2), 149–172 (1967) · Zbl 0254.65069 · doi:10.1016/0021-9991(66)90001-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.