×

Implications of string constraints for exotic matter and Z\({}^{\prime}\) s beyond the standard model. (English) Zbl 1306.81210

Summary: Global consistency of string compactifications places constraints on the chiral matter spectrum of a gauge theory which include those necessary for the absence of cubic nonabelian anomalies, but also contain some additional conditions. In the class of theories we study, some of these are present in a field theory augmented by anomalous U(1)’s and Chern-Simons terms, but some are genuinely not present in field theory. Their violation has phenomenological implications, rendering inconsistent many quiver gauge theories with the chiral matter spectrum of the MSSM. The inconsistent MSSM quivers often violate the constraints in a particular way that is suggestive of what matter must be added for consistency. The preferred matter additions are MSSM singlets with anomalous U(1) charge, hyperchargeless SU(2) triplets, quasichiral Higgs or lepton isodoublet pairs, quasichiral quark isosinglet pairs, and nonabelian singlets with charge {\(\pm 1\)}. Smaller numbers of quark isodoublet pairs, lepton pairs with charges \((\pm 1, \pm 2)\), and chiral fourth families are also found. We present the results of systematic analyses including multiplicity counts of matter beyond the standard model and also study the possibility of using the singlets for a dynamical perturbative \(\mu\)-term or for neutrino mass. We also systematically study the appearance of additional non-anomalous U(1)\({}^{\prime}\) symmetries in the low energy theory and find that family non-universality is very common. These new physics effects may be observable at the LHC even for a large string scale \(M_{s}\) close to the Planck scale.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81V22 Unified quantum theories
81T50 Anomalies in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R. Blumenhagen, L. Görlich, B. Körs and D. Lüst, Noncommutative compactifications of type-I strings on tori with magnetic background flux, JHEP10 (2000) 006 [hep-th/0007024] [INSPIRE]. · Zbl 0965.81113 · doi:10.1088/1126-6708/2000/10/006
[2] G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A. Uranga, D = 4 chiral string compactifications from intersecting branes, J. Math. Phys.42 (2001) 3103 [hep-th/0011073] [INSPIRE]. · Zbl 1036.81024 · doi:10.1063/1.1376157
[3] G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A. Uranga, Intersecting brane worlds, JHEP02 (2001) 047 [hep-ph/0011132] [INSPIRE] · doi:10.1088/1126-6708/2001/02/047
[4] R. Blumenhagen, B. Körs, D. Lüst and T. Ott, The standard model from stable intersecting brane world orbifolds, Nucl. Phys. B 616 (2001) 3 [hep-th/0107138] [INSPIRE]. · Zbl 0988.81094 · doi:10.1016/S0550-3213(01)00423-0
[5] M. Cvetič, G. Shiu and A.M. Uranga, Chiral four-dimensional \[\mathcal{N} = 1\] supersymmetric type 2A orientifolds from intersecting D6 branes, Nucl. Phys.B 615 (2001) 3 [hep-th/0107166] [INSPIRE]. · Zbl 0988.81087 · doi:10.1016/S0550-3213(01)00427-8
[6] M. Cvetič, G. Shiu and A.M. Uranga, Three family supersymmetric standard-like models from intersecting brane worlds, Phys. Rev. Lett.87 (2001) 201801 [hep-th/0107143] [INSPIRE]. · doi:10.1103/PhysRevLett.87.201801
[7] R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [INSPIRE]. · doi:10.1146/annurev.nucl.55.090704.151541
[8] R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE]. · doi:10.1016/j.physrep.2007.04.003
[9] M. Cvetič and J. Halverson, TASI lectures: particle physics from perturbative and non-perturbative effects in D-braneworlds, arXiv:1101.2907 [INSPIRE].
[10] I. Antoniadis, E. Kiritsis and T. Tomaras, A D-brane alternative to unification, Phys. Lett. B 486 (2000) 186 [hep-ph/0004214] [INSPIRE] · Zbl 1050.81721
[11] G. Aldazabal, L.E. Ibáñez, F. Quevedo and A. Uranga, D-branes at singularities: a bottom up approach to the string embedding of the standard model, JHEP08 (2000) 002 [hep-th/0005067] [INSPIRE]. · Zbl 0989.81558 · doi:10.1088/1126-6708/2000/08/002
[12] M. Cvetič, J. Halverson and P. Langacker, Singlet extensions of the MSSM in the quiver landscape, JHEP09 (2010) 076 [arXiv:1006.3341] [INSPIRE]. · Zbl 1291.81436 · doi:10.1007/JHEP09(2010)076
[13] M. Bianchi and J.F. Morales, Anomalies and tadpoles, JHEP03 (2000) 030 [hep-th/0002149] [INSPIRE]. · Zbl 0959.81089 · doi:10.1088/1126-6708/2000/03/030
[14] T. Dijkstra, L. Huiszoon and A. Schellekens, Chiral supersymmetric standard model spectra from orientifolds of Gepner models, Phys. Lett. B 609 (2005) 408 [hep-th/0403196] [INSPIRE]. · Zbl 1247.81364
[15] P. Anastasopoulos, G. Leontaris, R. Richter and A. Schellekens, SU(5) D-brane realizations, Yukawa couplings and proton stability, JHEP12 (2010) 011 [arXiv:1010.5188] [INSPIRE]. · Zbl 1294.81308
[16] R. Blumenhagen, G. Honecker and T. Weigand, Non-Abelian brane worlds: the heterotic string story, JHEP10 (2005) 086 [hep-th/0510049] [INSPIRE]. · doi:10.1088/1126-6708/2005/10/086
[17] P. Anastasopoulos, T. Dijkstra, E. Kiritsis and A. Schellekens, Orientifolds, hypercharge embeddings and the standard model, Nucl. Phys. B 759 (2006) 83 [hep-th/0605226] [INSPIRE]. · Zbl 1116.81069 · doi:10.1016/j.nuclphysb.2006.10.013
[18] R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua: the seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113 [hep-th/0609191] [INSPIRE]. · Zbl 1117.81112 · doi:10.1016/j.nuclphysb.2007.02.016
[19] L. Ibáñez and A. Uranga, Neutrino Majorana masses from string theory instanton effects, JHEP03 (2007) 052 [hep-th/0609213] [INSPIRE]. · doi:10.1088/1126-6708/2007/03/052
[20] B. Florea, S. Kachru, J. McGreevy and N. Saulina, Stringy instantons and quiver gauge theories, JHEP05 (2007) 024 [hep-th/0610003] [INSPIRE]. · doi:10.1088/1126-6708/2007/05/024
[21] L. Ibáñez and . Richter, Robert, Stringy instantons and Yukawa couplings in MSSM-like orientifold models, JHEP03 (2009) 090 [arXiv:0811.1583] [INSPIRE] · doi:10.1088/1126-6708/2009/03/090
[22] P. Anastasopoulos, E. Kiritsis and A. Lionetto, On mass hierarchies in orientifold vacua, JHEP08 (2009) 026 [arXiv:0905.3044] [INSPIRE]. · doi:10.1088/1126-6708/2009/08/026
[23] M. Cvetič, J. Halverson and. Richter, Robert, Realistic Yukawa structures from orientifold compactifications, JHEP12 (2009) 063 [arXiv:0905.3379] [INSPIRE] · doi:10.1088/1126-6708/2009/12/063
[24] M. Cvetič, J. Halverson and R. Richter, Mass hierarchies from MSSM orientifold compactifications, JHEP 07 (2010) 005 [arXiv:0909.4292] [INSPIRE]. · Zbl 1290.81201
[25] M. Cvetič, J. Halverson and R. Richter, Mass hierarchies versus proton decay in MSSM orientifold compactifications, arXiv:0910.2239 [INSPIRE]. · Zbl 1290.81201
[26] M. Cvetič and P. Langacker, D-instanton generated Dirac neutrino masses, Phys. Rev.D 78 (2008) 066012 [arXiv:0803.2876] [INSPIRE].
[27] E. Kiritsis, M. Lennek and B. Schellekens, SU(5) orientifolds, Yukawa couplings, stringy instantons and proton decay, Nucl. Phys. B 829 (2010) 298 [arXiv:0909.0271] [INSPIRE]. · Zbl 1203.81140 · doi:10.1016/j.nuclphysb.2009.12.012
[28] M. Cvetič, J. Halverson, P. Langacker and R. Richter, The Weinberg operator and a lower string scale in orientifold compactifications, JHEP10 (2010) 094 [arXiv:1001.3148] [INSPIRE]. · Zbl 1291.81306 · doi:10.1007/JHEP10(2010)094
[29] G.D. Kribs, T. Plehn, M. Spannowsky and T.M. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [INSPIRE].
[30] J. Erler and P. Langacker, Precision constraints on extra fermion generations, Phys. Rev. Lett. 105 (2010) 031801 [arXiv:1003.3211] [INSPIRE]. · doi:10.1103/PhysRevLett.105.031801
[31] M. Baak et al., Updated status of the global electroweak fit and constraints on new physics, arXiv:1107.0975 [INSPIRE].
[32] R.M. Godbole, S.K. Vempati and A. Wingerter, Four generations: SUSY and SUSY breaking, JHEP03 (2010) 023 [arXiv:0911.1882] [INSPIRE]. · Zbl 1271.81160 · doi:10.1007/JHEP03(2010)023
[33] J. Kang, P. Langacker and B.D. Nelson, Theory and phenomenology of exotic isosinglet quarks and squarks, Phys. Rev. D 77 (2008) 035003 [arXiv:0708.2701] [INSPIRE].
[34] P. Nath et al., The hunt for new physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl. 200-202 (2010) 185 [arXiv:1001.2693] [INSPIRE]. · doi:10.1016/j.nuclphysbps.2010.03.001
[35] A. Atre et al., Model-independent searches for new quarks at the LHC, JHEP08 (2011) 080 [arXiv:1102.1987] [INSPIRE]. · doi:10.1007/JHEP08(2011)080
[36] P. Athron, S. King, D. Miller, S. Moretti and R. Nevzorov, LHC signatures of the constrained exceptional supersymmetric standard model, Phys. Rev. D 84 (2011) 055006 [arXiv:1102.4363] [INSPIRE].
[37] D. Alves et al., Simplified models for LHC new physics searches, arXiv:1105.2838 [INSPIRE].
[38] S. Gopalakrishna, T. Mandal, S. Mitra and R. Tibrewala, LHC signatures of a vector-like b′, Phys. Rev. D 84 (2011) 055001 [arXiv:1107.4306] [INSPIRE].
[39] P. Langacker, The physics of heavy Z′gauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE]. · doi:10.1103/RevModPhys.81.1199
[40] V. Barger et al., Family non-universal U(1)′gauge symmetries and b → s transitions, Phys. Rev. D 80 (2009) 055008 [arXiv:0902.4507] [INSPIRE].
[41] V. Barger et al., b → s transitions in family-dependent U(1)′models, JHEP12 (2009) 048 [arXiv:0906.3745] [INSPIRE]. · doi:10.1088/1126-6708/2009/12/048
[42] L.L. Everett, J. Jiang, P.G. Langacker and T. Liu, Phenomenological implications of supersymmetric family non-universal U(1)′models, Phys. Rev. D 82 (2010) 094024 [arXiv:0911.5349] [INSPIRE].
[43] N. Deshpande, X.-G. He and G. Valencia, D0 dimuon asymmetry in \[{{B}_s} - {{\overline B }_s}\] mixing and constraints on new physics, Phys. Rev. D 82 (2010) 056013 [arXiv:1006.1682] [INSPIRE].
[44] F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP09 (2010) 033 [arXiv:1005.3998] [INSPIRE]. · Zbl 1291.81438 · doi:10.1007/JHEP09(2010)033
[45] I. Antoniadis, E. Kiritsis and T. Tomaras, D-brane standard model, Fortsch. Phys. 49 (2001) 573 [hep-th/0111269] [INSPIRE]. · Zbl 0971.81135 · doi:10.1002/1521-3978(200105)49:4/6<573::AID-PROP573>3.3.CO;2-1
[46] E. Kiritsis and P. Anastasopoulos, The anomalous magnetic moment of the muon in the D-brane realization of the standard model, JHEP05 (2002) 054 [hep-ph/0201295] [INSPIRE] · doi:10.1088/1126-6708/2002/05/054
[47] D. Ghilencea, L. Ibáñez, N. Irges and F. Quevedo, TeV scale Z′bosons from D-branes, JHEP08 (2002) 016 [hep-ph/0205083] [INSPIRE] · Zbl 1226.81191 · doi:10.1088/1126-6708/2002/08/016
[48] D. Berenstein and S. Pinansky, The minimal quiver standard model, Phys. Rev. D 75 (2007) 095009 [hep-th/0610104] [INSPIRE].
[49] D. Berenstein, R. Martinez, F. Ochoa and S. Pinansky, Z′boson detection in the minimal quiver standard model, Phys. Rev. D 79 (2009) 095005 [arXiv:0807.1126] [INSPIRE].
[50] R. Armillis, C. Corianò and M. Guzzi, Trilinear anomalous gauge interactions from intersecting branes and the neutral currents sector, JHEP05 (2008) 015 [arXiv:0711.3424] [INSPIRE]. · doi:10.1088/1126-6708/2008/05/015
[51] J. Kumar, A. Rajaraman and J.D. Wells, Probing the Green-Schwarz mechanism at the Large Hadron Collider, Phys. Rev. D 77 (2008) 066011 [arXiv:0707.3488] [INSPIRE].
[52] E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, (In)visible Z′and dark matter, JHEP08 (2009) 014 [arXiv:0904.1745] [INSPIRE]. · doi:10.1088/1126-6708/2009/08/014
[53] L.A. Anchordoqui, H. Goldberg, X. Huang, D. Lüst and T.R. Taylor, Stringy origin of Tevatron W jj anomaly, Phys. Lett.B 701 (2011) 224 [arXiv:1104.2302] [INSPIRE].
[54] L.A. Anchordoqui et al., Z′-gauge bosons as harbingers of low mass strings, arXiv:1107.4309 [INSPIRE].
[55] P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, Anomalies, anomalous U(1)’s and generalized Chern-Simons terms,JHEP11 (2006) 057 [hep-th/0605225] [INSPIRE]. · doi:10.1088/1126-6708/2006/11/057
[56] Y. Mambrini, A clear dark matter gamma ray line generated by the Green-Schwarz mechanism, JCAP12 (2009) 005 [arXiv:0907.2918] [INSPIRE].
[57] V. Kumar and W. Taylor, String universality in six dimensions, arXiv:0906.0987 [INSPIRE]. · Zbl 1259.81062
[58] V. Kumar, D.R. Morrison and W. Taylor, Mapping 6D \[\mathcal{N} = 1\] supergravities to F-theory, JHEP02 (2010) 099 [arXiv:0911.3393] [INSPIRE]. · Zbl 1270.81181 · doi:10.1007/JHEP02(2010)099
[59] V. Kumar and W. Taylor, A bound on 6D \[\mathcal{N} = 1\] supergravities, JHEP12 (2009) 050 [arXiv:0910.1586] [INSPIRE]. · doi:10.1088/1126-6708/2009/12/050
[60] E. Witten, An SU(2) anomaly, Phys. Lett. B 117 (1982) 324 [INSPIRE]
[61] L.E. Ibáñez, F. Marchesano and R. Rabadán, Getting just the standard model at intersecting branes, JHEP11 (2001) 002 [hep-th/0105155] [INSPIRE].
[62] J. Jiang, T. Li and D.V. Nanopoulos, Testable flipped SU(5) × U(1)Xmodels, Nucl. Phys. B 772 (2007) 49 [hep-ph/0610054] [INSPIRE] · doi:10.1016/j.nuclphysb.2007.02.025
[63] H. Georgi and S. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE] · doi:10.1103/PhysRevLett.32.438
[64] P. Langacker and G. Steigman, Requiem for an FCHAMP? Fractionally CHArged, Massive Particle, Phys. Rev. D 84 (2011) 065040 [arXiv:1107.3131] [INSPIRE].
[65] D. Choudhury, T.M. Tait and C. Wagner, Beautiful mirrors and precision electroweak data, Phys. Rev. D 65 (2002) 053002 [hep-ph/0109097] [INSPIRE]
[66] P. Langacker, Grand unified theories and proton decay, Phys. Rept. 72 (1981) 185 [INSPIRE] · doi:10.1016/0370-1573(81)90059-4
[67] J.L. Hewett and T.G. Rizzo, Low-energy phenomenology of superstring inspired E6models, Phys. Rept. 183 (1989) 193 [INSPIRE] · doi:10.1016/0370-1573(89)90071-9
[68] M. Chemtob, Phenomenological constraints on broken R parity symmetry in supersymmetry models, Prog. Part. Nucl. Phys. 54 (2005) 71 [hep-ph/0406029] [INSPIRE] · doi:10.1016/j.ppnp.2004.06.001
[69] R. Barbier et al., R-parity violating supersymmetry, Phys. Rept.420 (2005) 1 [hep-ph/0406039] [INSPIRE] · doi:10.1016/j.physrep.2005.08.006
[70] J.R. Ellis, J. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs bosons in a nonminimal supersymmetric model, Phys. Rev. D 39 (1989) 844 [INSPIRE]
[71] V. Barger, P. Langacker, H.-S. Lee and G. Shaughnessy, Higgs sector in extensions of the MSSM, Phys. Rev. D 73 (2006) 115010 [hep-ph/0603247] [INSPIRE]
[72] U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE]. · doi:10.1016/j.physrep.2010.07.001
[73] M. Maniatis, The next-to-minimal supersymmetric extension of the standard model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE]. · Zbl 1194.81301
[74] J.A. Maxin, V.E. Mayes and D. Nanopoulos, Proton stability and dark matter in a realistic string MSSM, arXiv:1108.0887 [INSPIRE].
[75] J.-H. Kang, P. Langacker and T.-J. Li, Neutrino masses in supersymmetric SU(3)C × SU(2)L × U(1)Y × U(1)′models, Phys. Rev. D 71 (2005) 015012 [hep-ph/0411404] [INSPIRE]
[76] P. Langacker and M. Plümacher, Flavor changing effects in theories with a heavy Z′boson with family nonuniversal couplings, Phys. Rev. D 62 (2000) 013006 [hep-ph/0001204] [INSPIRE]
[77] R. Blumenhagen, G. Honecker and T. Weigand, Loop-corrected compactifications of the heterotic string with line bundles, JHEP06 (2005) 020 [hep-th/0504232] [INSPIRE]. · doi:10.1088/1126-6708/2005/06/020
[78] A.M. Uranga, D-brane probes, RR tadpole cancellation and k-theory charge, Nucl. Phys. B 598 (2001) 225 [hep-th/0011048] [INSPIRE]. · Zbl 1046.81543 · doi:10.1016/S0550-3213(00)00787-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.