×

The late arrival of academic applied mathematics in the United States: a paradox, theses, and literature. (English) Zbl 1034.01020

Relying on his published study of the subject, the author discusses in this short note the “paradox of the late (around 1940) arrival of academic applied mathematics in the U.S.”. There is a short description of the indigenious development and a somewhat more detailed one of the “arrival” itself which the author attributed mainly to the transfer of “ideas, persons, ideals” after 1933, in particular from Germany, as exemplified by R. Courant, J. von Neumann, R. von Mises, and others. The paper is completed by a bibliography of 65 items.

MSC:

01A60 History of mathematics in the 20th century
01A80 Sociology (and profession) of mathematics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bayart, Denis and Pierre Crépel: ”Statistical Control of Manufacture”Companion Enyclopedia of the History and Philosophy of the Mathematical Sciences, 2 Volumes. ed. Ivor Grattan-Guinness. Routledge: London/New York 1994, p. 1386–1391.
[2] Ben-David, Joseph:The scientist’s role in society. A comparative study, Prentice Hall: Englewood Cliffs 1971.
[3] Bennett, Albert A., William E. Milne and Harry Bateman: ”Numerical Integration of Differential Equations”. National Research Council: Washington: 1933 (=Bulletin National Research Council 92). · Zbl 0008.26801
[4] Bledstein, B.J.:The Culture of Professionalism. The Middle Class and the Development of Higher Education in America. Norton: New York, London 1976.
[5] Brocke, Bernhard vom (ed.):Wissenschaftsgeschichte und Wissenschaftspolitik im Industriezeitalter. Das ”System Althoff” in historischer Perspektive. Lax: Hildesheim 1991.
[6] Butler, Loren:Mathematical Physics and the American Mathematics Community. Ph.D. Dissertation Chicago 1992.
[7] Butler, Loren: ”Mathematical Physics and the Planning of American Mathematics: Ideology and Institutions”,Historia Mathematica 24 (1997), p. 66–85. · Zbl 0879.01022
[8] Corry, Leo: ”David Hilbert and the Axiomatization of Physics (1894–1905)”,Archive for History of Exact Sciences 51 (1997), p. 83–198. · Zbl 0890.01011
[9] Courant, Richard. ”Variational Methods for the Solution of Problems of Equilibrium and Vibrations”,Bulletin of the American Mathematical Society 49 (1943), p. 1–23. · Zbl 0063.00985
[10] Courant, Richard and David Hilbert:Methoden der mathematischen Physik; 2 Volumes, Springer: Berlin 1924 and 1937. · JFM 50.0335.07
[11] Courant, Richard, Friedrichs, Kurt and Hans Lewy: ”Über die partiellen Differenzengleichungen der mathematischen Physik”.Mathematische Annalen 100 (1928), p. 32–74 [english in:IBM Journal of Research and Development 11 (1967), p. 214–234]. · JFM 54.0486.01
[12] Dahan Dalmedico, Amy: ”L’essor des mathématiques appliquées aux États-Unis: l’impact de la Seconde Guerre Mondiale”.Revue d’histoire des mathématiques 2 (1996), p. 149–213. · Zbl 0879.01023
[13] Dryden, H.L., F.D. Murnaghan and H. Bateman: ”Report of the Committee on Hydrodynamics”.Bulletin of the National Research Council no. 84 (1932), p. 1–634. · JFM 58.0866.07
[14] Duren, Peter (ed.):A Century of Mathematics in America 3 volumes. American Mathematical Society: Providence 1988/89. · Zbl 0656.00001
[15] Duren, William L.: ”Mathematics in American Society 1888–1988. A Historical Commentary”. In: Duren, P. (ed.) 1988/89, vol. 2 (1989), p. 399–447.
[16] Fry, Thornton: ”Industrial Mathematics”.The Bell System Technical Journal 20 (1941), p. 255–292. · Zbl 0028.19501
[17] Goldstine, Herman H.:The Computer from Pascal to von Neumann. Princeton University Press: Princeton 1972. · Zbl 0245.01017
[18] Hanle, Paul A.:Bringing Aerodynamics to America. MIT Press: Cambridge, Mass. 1982.
[19] Harwood, Jonathan: ”Institutional Innovation in fin de siècle Germany”.British Journal for History of Science 27 (1994), p. 197–211.
[20] Hunsaker, J. and S. MacLane: ”Edwin Bidwell Wilson (1879–1964)”.Biographical Memoirs National Academy of Sciences 43 (1973), p. 284–320.
[21] Hunter, Patti W.: ”Drawing the Boundaries: Mathematical Statistics in 20th-Century America”.Historia Mathematica 23 (1996), p. 7–30. · Zbl 0845.01006
[22] Jammer, Max:The Conceptual Development of Quantum Mechanics. 2. ed., Tomash Publishers: New York 1989. · Zbl 0625.01001
[23] Kármán, Theodor von: ”Mathematik und technische Wissenschaften”.Die Naturwissenschaften 18 (1930), p. 12–16. · JFM 56.0674.01
[24] Korn, Arthur: ”Teaching of Mathematics in the United States and in Germany”.Journal of Engineering Education 35 (1945), p. 407–413.
[25] Lax, Peter: ”Hyperbolic Difference Equations: A Review of the Courant-Friedrichs-Lewy Paper in The Light of Recent Developments”.IBM Journal for Research and Development 11 (1967), p. 235–238. · Zbl 0233.65051
[26] Lax, Peter: ”The Flowering of Applied Mathematics in America”. In: Duren, P. (ed.), vol. 2 (1989), p. 455–466. · Zbl 0687.01010
[27] Levine, Lawrence W.:Highbrow/Lowbrow. The Emergence of Cultural Hierarchy in America. Harvard University Press: Cambridge, Mass. 1988.
[28] Lundgreen, Peter: ”Engineering Education in Europe and the U.S.A., 1750–1930: The Rise to Dominance of School Culture and the Engineering Professions”.Annals of Science 47 (1990), p. 33–75.
[29] Mehrtens, Herbert:Moderne, Sprache, Mathematik. Suhrkamp: Frankfurt 1990.
[30] Millman, S. (ed.):A History of Engineering and Science in the Bell System. Communication Sciences (1925–1980). AT&T Bell Laboratories: New York 1984.
[31] Mises, Richard von: ”Pflege der angewandten Mathematik in Deutschland”.Die Naturwissenschaften 15 (1927), p. 473. · JFM 53.0055.01
[32] Moore, Eliakim H.: ”On the Foundations of Mathematics”.Science 17 (1903), p. 401–416.
[33] Owens, Larry: ”Vannevar Bush and the Differential Analyzer: The Text and Context of an Early Computer”.Technology & Culture 27 (1986), p. 63–95.
[34] Owens, Larry: ”Mathematics and War. Warren Weaver and the Applied Mathematics Panel 1942–1945”. In Rowe/McCleary 1989, Vol. II, p. 287–305.
[35] Parshall, Karen H.; David E. Rowe:The Emergence of the American Mathematical Research Community 1876–1900: J.J. Sylvester, Felix Klein, and E.H. Moore. American Mathematical Society: Providence 1994. · Zbl 0802.01005
[36] Puchta, Susann: ”Why and How American Electrical Engineers Developed ’Heaviside’s Operational Calculus”’.Archives Internationales d’Histoire des Sciences 47 (1997), no. 138, p. 57–107. · Zbl 1039.01006
[37] Pyenson, Lewis: ”Mathematics, Education, and the Göttingen Approach to Physical Reality, 1890–1914”.Europa, A Journal of Interdisciplinary Studies 2 (1979), 2, p. 91–127.
[38] Reich, Karin: ”The American Contribution to the Theory of Differential Invariants, 1900–1916”.The Attraction of Gravitation: New Studies in the History of General Relativity. ed. Earman, J. et al., Birkhäuser: Boston, Basel 1993, p. 225–247.
[39] Reid, Constance:Courant in Göttingen and New York. The Story of an Improbable Mathematician. Springer: New York etc. 1976. · Zbl 0353.01010
[40] Reingold, Nathan: ”Refugee Mathematicians in the United States of America 1933–1941”.Annals of Science 38 (1981), p. 313–338. · Zbl 0457.01016
[41] Richardson, Roland G.D.: ”Applied Mathematics and the Present Crisis”.American Mathematical Monthly 50 (1943), p. 415–423. · Zbl 0060.01822
[42] Rowe, David E.: ”Klein, Hilbert, and the Göttingen Tradition”.Osiris (2) 5 (1989), p. 186–213. · Zbl 0894.01003
[43] Rowe, David and John McCleary (eds.):The History of Modern Mathematics. Volume II: Institutions and Applications. Academic Press: Boston etc 1989. · Zbl 0687.01007
[44] Schubring, Gert: ”Changing Cultural and Epistemological Views on Mathematics and Differenti Institutional Contexts in Nineteenth-century Europe”.L’Europe mathématique, ed. C. Goldstein, J. Gray and J. Ritter, Editions de la Maison des sciences de l’homme, Paris 1996, p. 361–388. · Zbl 0880.01013
[45] Schweber, Silvan S.: ”The Empiricist Temper Regnant: Theoretical physics in the United States 1920–1950”.Historical Studies Physical Sciences 17 (1986), 1, p. 55–98.
[46] Servos, John: ”Mathematics and the Physical Sciences in America, 1880–1930”.ISIS 77 (1986), p. 611–629. · Zbl 0627.01046
[47] Siegmund-Schultze, Reinhard: ”Las frustradas tentativas de reforma de la formación matemática de los ingenieros en los Estados Unidos de América en torno a 1900 sobre el trasfondo de similares reformas en Alemania”.Llull 18 (1995), p. 619–652.
[48] Siegmund-Schultze, R.: ”The Emancipation of Mathematical Research Publishing in the United States from German Dominance (1878–1945)”.Historia Mathematica 24 (1997a), p. 135–166. · Zbl 0878.01022
[49] Siegmund-Schultze, R.: ”Ein Bericht Felix Kleins aus dem Jahre 1902 über seine mathematischen Vorträge in den Vereinigten Staaten 1893 und 1896”.NTM (N.S.) 5 (1997b), 228–235. · Zbl 0916.01009
[50] Siegmund-Schultze, R.: ”Felix Kleins Beziehungen zu den Vereinigten Staaten, die Anfänge deutscher auswärtiger Wissenschaftspolitik und die Reform um 1900”.Sudhoffs Archiv 81 (1997c), p. 21–38. · Zbl 1170.01414
[51] Siegmund-Schultze, R.:Mathematiker auf der Flucht vor Hitler. Quellen und Studien zur Emigration einer Wissenschaft. Vieweg: Braunschweig/Wiesbaden 1998. · Zbl 0917.01025
[52] Siegmund-Schultze, R.:Rockefeller and the Internationalization of Mathematics Between the Two World Wars. Documents and Studies for the Social History of Mathematics in the 20th century. Birkhäuser: Basel etc. 2001. · Zbl 0981.01013
[53] Tobies, Renate: ”Wissenschaftliche Schwerpunktbildung: der Ausbau Göttingens zum Zentrum der Mathematik und Naturwissenschaften”, in: Brocke 1991 (ed.), p. 87–108.
[54] Truesdell; Clifford:An Idiot’s Fugitive Essays on Science. Springer: New York, Berlin 1984. · Zbl 0599.01013
[55] Truesdell, Clifford: ”Genius and the Establishment of a Polite Standstill in the Modern University: Bateman”. in: Truesdell 1984, p. 403–438.
[56] Wehler, Hans-Ulrich:Der Aufstieg des amerikanischen Imperialismus. Vandenhoeck & Ruprecht: Göttingen 1974.
[57] Weyl, Hermann: ”Courant and Hilbert on Partial Differential Equations (Review)”.Bulletin American Mathematical Society 44 (1938), p. 602–604.
[58] Williamson, Frank: ”Richard Courant and the Finite Element Method: A Further Look”.Historia Mathematica 7 (1980), p. 369–378. · Zbl 0489.65002
[59] Wilson, Edwin B.:Vector Analysis: A Text Book for the Use of Students of Mathematics and Physics Founded upon the Lectures of J. Willard Gibbs. New York/London 1901.
[60] Zienkiewicz, O.C.: ”Achievements and some unsolved problems of the finite element method”.International Journal for Numerical Methods in Engineering 47 (2000), p. 9–28. · Zbl 0962.76056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.