×

Computational homology of \(n\)-types. (English) Zbl 1267.55007

Summary: We describe an algorithm for computing the integral homology of a simplicial group and illustrate an implementation on simplicial groups arising as the nerve of a category object in the category of groups.

MSC:

55U10 Simplicial sets and complexes in algebraic topology
18G30 Simplicial sets; simplicial objects in a category (MSC2010)
68W30 Symbolic computation and algebraic computation

Software:

HAP; GAP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baues, H.-J.; Bleile, B., Poincaré duality complexes in dimension four, Algebr. Geom. Topol., 8, 2355-2389 (2008) · Zbl 1164.57008
[2] Berger, C., Iterated wreath product of the simplex category and iterated loop spaces, Adv. Math., 213, 230-270 (2007) · Zbl 1127.18008
[3] Brown, R., The twisted Eilenberg-Zilber theorem, Celebrazioni Arch. Secolo XX, 34-37 (1967), Simp. Top
[4] Brown, R.; Johnson, D. L.; Robertson, E. F., Some computations of non-abelian tensor products of groups, J. Algebra, 111, 177-202 (1987) · Zbl 0626.20038
[5] Carrasco, P.; Cegarra, A. M.; Grandjen, A. R., (Co)homology of crossed modules, Category theory 1999 (Coimbra). Category theory 1999 (Coimbra), J. Pure Appl. Algebra, 168, 2-3, 147-176 (2002) · Zbl 0996.18010
[6] Clément, A., 2002. Integral cohomology of finite Postnikov towers. Thèse de doctorat, Université de Lausanne.; Clément, A., 2002. Integral cohomology of finite Postnikov towers. Thèse de doctorat, Université de Lausanne.
[7] Crainic, M., 2004. On the perturbation lemma, and deformations, p. 13. arXiv:math/0403266v1; Crainic, M., 2004. On the perturbation lemma, and deformations, p. 13. arXiv:math/0403266v1
[8] Datuashvili, T.; Pirashvili, T., On (co)homology of 2-types and crossed modules, J. Algebra, 244, 1, 352-365 (2001) · Zbl 1029.55012
[9] Dlotko, P.; Kaczynski, T.; Mrozek, M.; Wanner, T., Coreduction homology algorithm for regular CW-complexes, Discrete Comput. Geom., 46, 2, 361-388 (2011) · Zbl 1229.55001
[10] Dutour Sikric, M.; Ellis, G., Wythoff polytopes and low-dimensional homology of Mathieu groups, J. Algebra, 322, 11, 4143-4150 (2009) · Zbl 1186.20033
[11] Dutour Sikric, M.; Ellis, G.; Schürmann, A., The integral cohomology of \(P S L_4(Z)\) and other arithmetic groups, J. Number Theory, 131, 12, 2368-2375 (2011) · Zbl 1255.11028
[12] Ellis, G., Homology of 2-types, J. Lond. Math. Soc. (2), 46, 1, 1-27 (1992) · Zbl 0713.18008
[13] Ellis, G., 2008. hapgaphttp://www.gap-system.org/Packages/hap.html; Ellis, G., 2008. hapgaphttp://www.gap-system.org/Packages/hap.html
[14] Ellis, G., Computing group resolutions, J. Symbolic Comput., 38, 3, 1077-1118 (2004) · Zbl 1138.20313
[15] Ellis, G.; Harris, J.; Sköldberg, E., Polytopal resolutions for finite groups, J. Reine Angew. Math., 598, 131-137 (2006) · Zbl 1115.20041
[16] Ellis, G.; Sköldberg, E., The \(K(\pi, 1)\) conjecture for a class of Artin groups, Comment. Math. Helv., 85, 2, 409-415 (2010) · Zbl 1192.55011
[17] Ellis, G.; Williams, A. G., On the cohomology of generalized triangle groups, Comment. Math. Helv., 80, 3, 571-591 (2005) · Zbl 1084.20034
[18] The gapgaphttp://www.gap-system.org; The gapgaphttp://www.gap-system.org
[19] Green, D. J., (Gröbner bases and the computation of group cohomology. Gröbner bases and the computation of group cohomology, Lecture Notes in Math., vol. 1828 (2003), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1050.20036
[20] Loday, J.-L., Spaces with finitely many non-trivial homotopy groups, J. Pure Appl. Algebra, 24, 2, 179-202 (1982) · Zbl 0491.55004
[21] Paoli, S., (Co)homology of crossed modules with coefficients in a \(\pi_1\)-module, Homology, Homotopy Appl., 5, 1, 261-296 (2003) · Zbl 1036.18008
[22] Röder, M., Geometric algorithms for resolutions for Bieberbach groups, Computational group theory and the theory of groups, II. Computational group theory and the theory of groups, II, Contemp. Math., 511, 167-178 (2010) · Zbl 1201.20047
[23] Romero, A., 2007. Homología efectiva y sucesiones espectrales, Ph.D. thesis, Univ. de la Rioja.; Romero, A., 2007. Homología efectiva y sucesiones espectrales, Ph.D. thesis, Univ. de la Rioja.
[24] Romero, A., Ellis, G., Rubio, J., 2009. Interoperating between computer algebra systems: computing homology of groups with Kenzo and GAP, ISAAC Proceedings, pp. 303-310.; Romero, A., Ellis, G., Rubio, J., 2009. Interoperating between computer algebra systems: computing homology of groups with Kenzo and GAP, ISAAC Proceedings, pp. 303-310. · Zbl 1237.68260
[25] Romero, A., Rubio, J., Computing the homology of groups: the geometric way. J. Symbolic Comput. doi:10.1016/j.jsc2011.12.007; Romero, A., Rubio, J., Computing the homology of groups: the geometric way. J. Symbolic Comput. doi:10.1016/j.jsc2011.12.007 · Zbl 1251.20048
[26] Rubio, J.; Sergeraert, F., Algebraic models for homotopy types, Homology, Homotopy Appl., 7, 2, 139-160 (2005) · Zbl 1088.55006
[27] Rubio, J., Sergeraert, F., 2006. Constructive homological algebra and applications, summer school lecture notes, Genova.; Rubio, J., Sergeraert, F., 2006. Constructive homological algebra and applications, summer school lecture notes, Genova.
[28] Sergeraert, F., Kenzohttp://www-fourier.ujf-grenoble.fr/ sergerar/Kenzo; Sergeraert, F., Kenzohttp://www-fourier.ujf-grenoble.fr/ sergerar/Kenzo
[29] Wall, C. T.C., Resolutions of extensions of groups, Proc. Cambridge Philos. Soc., 57, 251-255 (1961) · Zbl 0106.24903
[30] Weibel, C., (An Introduction to Homological Algebra. An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38 (1994), Cambridge), xiv+450 · Zbl 0797.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.