×

On the distribution of terminal wealth under dynamic mean-variance optimal investment strategies. (English) Zbl 1465.91102


MSC:

91G10 Portfolio theory
93E20 Optimal stochastic control
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M. Agren (2006), Prospect Theory and Higher Moments, working paper, Department of Economics, Uppsala Universitet.
[2] I. Alia, F. Chighoub, and A. Sohail (2016), A characterization of equilibrium strategies in continuous-time mean-variance problems for insurers, Insurance Math. Econom., 68(C), pp. 212-223. · Zbl 1369.91074
[3] P. Antolin, S. Blome, D. Karim, S. Payet, G. Scheuenstuhl, and J. Yermo (2009), Investment Regulations and Defined Contribution Pensions, OECD Working Paper on Insurance and Private Pensions, No. 37, OECD Publishing.
[4] B. Aracioglu, F. Demircan, and H. Ucak (2011), Mean-variance-skewness-kurtosis approach to portfolio optimization: An application in Istanbul stock exchange, Ege Academic Review, 11, pp. 9-17.
[5] A. B. Atkinson (1987), On the measurement of poverty, Econometrica, 55, pp. 749-764.
[6] K. Back, A. D. Crane, and K. Crotty (2018), Skewness consequences of seeking alpha, Rev. Financial Stud., 31, pp. 4720-4761.
[7] N. Barberis and M. Huang (2008), Stocks as lotteries: The implications of probability weighting for security prices, Amer. Econom. Rev., 98, pp. 2066-2100.
[8] N. Barberis, C. Harvey, and N. Shephard (2016), Skewness, discussion by the Man AHL Academic Advisory Board, London.
[9] S. Basak and G. Chabakauri (2010), Dynamic mean-variance asset allocation, Rev. Financial Stud., 23, pp. 2970-3016.
[10] J. Bender, T. Blackburn, and X. Sun (2019), Clash of the titans: Factor portfolios versus alternative weighting schemes, J. Portfolio Management Quantitative Special Issue, 45, pp. 38-49.
[11] A. Bensoussan, K. C. Wong, and S. C. P. Yam (2019), A paradox in time-consistency in the mean-variance problem?, Finance Stoch., 23, pp. 173-207. · Zbl 1426.91240
[12] J. Bi and J. Cai (2019), Optimal investment-reinsurance strategies with state dependent risk aversion and VaR constraints in correlated markets, Insurance Math. Econom., pp. 1-14. · Zbl 1419.91349
[13] T. Bjork (2009), Arbitrage Theory in Continuous Time, Oxford University Press. · Zbl 1140.91038
[14] T. Bjork and A. Murgoci (2010), A General Theory of Markovian Time Inconsistent Stochastic Control Problems, SSRN working paper. · Zbl 1297.49038
[15] T. Bjork and A. Murgoci (2014), A theory of Markovian time-inconsistent stochastic control in discrete time, Finance Stoch., 18, pp. 545-592. · Zbl 1297.49038
[16] T. Bjork, A. Murgoci, and X. Y. Zhou (2014), Mean-variance portfolio optimization with state-dependent risk aversion, Math. Finance, 24, pp. 1-24. · Zbl 1285.91116
[17] B. Boyer, T. Mitton, and K. Vorkink (2010), Expected idiosyncratic skewness, Rev. Financial Stud., 23, pp. 169-202.
[18] Z. Chen, G. Li, and J. Guo (2013), Optimal investment policy in the time consistent mean-variance formulation, Insurance Math. Econom., 52, pp. 145-156. · Zbl 1284.91514
[19] F. Cong and C. W. Oosterlee (2016a), On pre-commitment aspects of a time-consistent strategy for a mean-variance investor, J. Econom. Dynam. Control, 70, pp. 178-193. · Zbl 1401.91512
[20] F. Cong and C. W. Oosterlee (2016b), Multi-period mean-variance portfolio optimization based on Monte-Carlo simulation, J. Econom. Dynam. Control, 64, pp. 23-38. · Zbl 1401.91513
[21] F. Cong and C. W. Oosterlee (2017), On robust multi-period pre-commitment and time-consistent mean-variance portfolio optimization, Internat. J. Theoret. Appl. Finance, 20, 1750049. · Zbl 1415.91257
[22] D. M. Dang and P. A. Forsyth (2014), Continuous time mean-variance optimal portfolio allocation under jump diffusion: A numerical impulse control approach, Numer. Methods Partial Differential Equations, 30, pp. 664-698. · Zbl 1284.91569
[23] D. M. Dang and P. A. Forsyth (2016), Better than pre-commitment mean-variance portfolio allocation strategies: A semi-self-financing Hamilton-Jacobi-Bellman equation approach, European J. Oper. Res., 250, pp. 827-841. · Zbl 1348.91250
[24] D. M. Dang, P. A. Forsyth, and Y. Li (2016), Convergence of the embedded mean-variance optimal points with discrete sampling, Numer. Math., 132, pp. 271-302. · Zbl 1408.65039
[25] D. M. Dang, P. A. Forsyth, and K. R. Vetzal (2017), The 4 percent strategy revisited: A pre-commitment mean-variance optimal approach to wealth management, Quant. Finance, 17, pp. 335-351. · Zbl 1402.91682
[26] V. DeMiguel, A. Martin-Utrera, F. J. Nogales, and R. Uppal (2020), A transaction-cost perspective on the multitude of firm characteristics, Rev. Financial Stud., 33, pp. 2180-2222.
[27] F. E. Dopfel and A. Lester (2018), Optimal blending of smart beta and multifactor portfolios, J. Portfolio Management Quantitative Special Issue, 44, pp. 93-105.
[28] E. J. Elton, M. J. Gruber, S. J. Brown, and W. N. Goetzmann (2014), Modern Portfolio Theory and Investment Analysis, 9th ed., Wiley.
[29] P. A. Forsyth (2020), Multi-period mean conditional value at risk asset allocation: Is it advantageous to be time consistent?, SIAM J. Financial Math., 11, pp. 358-384, https://doi.org/10.1137/19M124650X. · Zbl 1443.91341
[30] P. A. Forsyth and K. R. Vetzal (2017a), Dynamic mean variance asset allocation: Tests for robustness, Internat. J. Financial Engrg., 4, 1750021.
[31] P. A. Forsyth and K. R. Vetzal (2017b), Robust asset allocation for long-term target-based investing, Internat. J. Theoret. Appl. Finance, 20, 1750017. · Zbl 1396.91686
[32] P. A. Forsyth and K. R. Vetzal (2019a), Optimal asset allocation for retirement saving: Deterministic vs. time consistent adaptive strategies, Appl. Math. Finance, 26, pp. 1-37. · Zbl 1410.91413
[33] P. A. Forsyth and K. R. Vetzal (2019b), Defined contribution pension plans: Who has seen the risk?, J. Risk Financial Management, 12, 70.
[34] P. A. Forsyth, K. R. Vetzal, and G. Westmacott (2019), Management of portfolio depletion risk through optimal life cycle asset allocation, North Amer. Actuarial J., 23, pp. 447-468. · Zbl 1426.91218
[35] W. Goetzmann, J. Ingersoll, M. Spiegel, and I. Welch (2002), Sharpening Sharpe Ratios, NBER working paper 9116.
[36] W. N. Goetzmann and A. Kumar (2008), Equity portfolio diversification, Rev. Finance, 12, pp. 433-463. · Zbl 1144.91324
[37] S. Graf (2017), Life-cycle funds: Much ado about nothing?, European J. Finance, 23, pp. 974-998.
[38] M. Haas (2007), Do investors dislike kurtosis?, Econom. Bull., 7, pp. 1-9.
[39] A. Hagestande and B. S. Wittussen (2016), Skewness, Idiosyncratic Volatility and Probability Weighting-How Can Wealth Managers Help Clients?, Master’s thesis, Norwegian School of Economics, Bergen, Norway.
[40] A. Heuson, M. Hutchinson, and A. Kumar (2020), Predicting hedge fund performance when fund returns are skewed, Financial Management, 49, pp. 877-896.
[41] B. Højgaard and E. Vigna (2007), Mean-variance Portfolio Selection and Efficient Frontier for Defined Contribution Pension Schemes, report R-2007-13, Research Report Series, Department of Mathematical Sciences, Aalborg University.
[42] E. Jondeau and G. M. Rockinger (2006), Optimal portfolio allocation under higher moments, Eur. Financial Management, 12, pp. 29-55.
[43] P. Jorion (2009), Financial Risk Manager Handbook, 5th ed., Wiley Finance.
[44] M. S. Joshi and J. M. Paterson (2013), Introduction to Mathematical Portfolio Theory, Cambridge University Press. · Zbl 1329.91002
[45] E. Jurczenko, B. Maillet, and P. Merlin (2012), Hedge fund portfolio selection with higher-order moments: A nonparametric mean-variance-skewness-kurtosis efficient frontier, in Multi-moment Asset Allocation and Pricing Models, E. Jurczenko and B. Maillet, eds., Wiley, pp. 51-66.
[46] A. Kumar (2009), Who gambles in the stock market?, J. Finance, 64, pp. 1889-1933.
[47] K. K. Lai, L. Yu, and S. Wang (2006), Mean-variance-skewness-kurtosis-based portfolio optimization, in Proceedings of the First International Multi-Symposiums on Computer and Computational Sciences, IEEE, pp. 292-297.
[48] D. Li and W.-L. Ng (2000), Optimal dynamic portfolio selection: Multi period mean variance formulation, Math. Finance, 10, pp. 387-406. · Zbl 0997.91027
[49] Y. Li and P. A. Forsyth (2019), A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans, Insurance Math. Econom., 86, pp. 189-204. · Zbl 1411.91304
[50] Y. Li and Z. Li (2013), Optimal time-consistent investment and reinsurance strategies for mean-variance insurers with state dependent risk aversion, Insurance Math. Econom., 53, pp. 86-97. · Zbl 1284.91249
[51] X. Liang, L. Bai, and J. Guo (2014), Optimal time-consistent portfolio and contribution selection for defined benefit pension schemes under mean-variance criterion, ANZIAM, 56, pp. 66-90. · Zbl 1302.93243
[52] Z. Liang and M. Song (2015), Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information, Insurance Math. Econom., 65, pp. 66-76. · Zbl 1348.91168
[53] X. Lin and Y. Qian (2016), Time-consistent mean-variance reinsurance-investment strategy for insurers under CEV model, Scand. Actuarial J., 2016, pp. 646-671. · Zbl 1401.91168
[54] J. Long and S. Zeng (2016), Equilibrium time-consistent strategy for corporate international investment problem with mean-variance criterion, Math. Problems Engrg., 2016, 3295041. · Zbl 1400.91645
[55] K. Ma and P. A. Forsyth (2016), Numerical solution of the Hamilton-Jacobi-Bellman formulation for continuous time mean variance asset allocation under stochastic volatility, J. Comput. Finance, 20, pp. 1-37.
[56] D. Maringer and P. Parpas (2009), Global optimization of higher order moments in portfolio selection, J. Global Optim., 43, pp. 219-230. · Zbl 1169.90454
[57] H. Markowitz (1952), Portfolio selection, J. Finance, 7, pp. 77-91.
[58] F. Menoncin and E. Vigna (2013), Mean-variance Target-based Optimisation in DC Plan with Stochastic Interest Rate, working paper, Collegio Carlo Alberto.
[59] C. W. Miller and I. Yang (2017), Optimal control of conditional value-at-risk in continuous time, SIAM J. Control Optim., 55, pp. 856-884, https://doi.org/10.1137/16M1058492. · Zbl 1366.49031
[60] T. Mitton and K. Vorkink (2007), Equilibrium underdiversification and the preference for skewness, Rev. Financial Stud., 20, pp. 1255-1258.
[61] C. I. Nkeki (2014), Stochastic funding of a defined contribution pension plan with proportional administrative costs and taxation under mean-variance optimization approach, Statist. Optim. Inform. Comput., 2, pp. 323-338.
[62] A. Omed and J. Song (2014), Investors’ Pursuit of Positive Skewness in Stock Returns: An Empirical Study of the Skewness Effect on Market-to-book Ratio, Master’s thesis, University of Gothenburg, Gothenburg, Sweden.
[63] J. Pedersen and G. Peskir (2017), Optimal mean-variance portfolio selection, Math. Financial Econom., 11, pp. 137-160. · Zbl 1390.91285
[64] L. M. Peng, X. Y. Cui, and Y. Shi (2018), Time-consistent portfolio policy for asset-liability mean-variance model with state-dependent risk aversion, J. Oper. Res. Soc. China, 6, pp. 175-188. · Zbl 1413.91087
[65] S. Perrin and T. Roncalli (2020), Machine learning optimization algorithms and portfolio allocation, in Machine Learning for Asset Management: New Developments and Financial Applications, E. Jurczenko, ed., Wiley, pp. 261-328.
[66] R. T. Rockafellar and S. Uryasev (2002), Conditional value-at-risk for general loss distributions, J. Banking Finance, 26, pp. 1443-1471.
[67] F. Soupé, X. Lu, and R. Leote de Carvalho (2019), Factor investing: Get your exposures right!, J. Investment Strategies, 8, pp. 1-36.
[68] M. Strub, D. Li, and X. Cui (2019), An Enhanced Mean-variance Framework for Robo-advising Applications, SSRN working paper 3302111.
[69] J. Sun, Z. Li, and Y. Zeng (2016), Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump-diffusion model, Insurance Math. Econom., 67, pp. 158-172. · Zbl 1348.91261
[70] P. M. van Staden, D. M. Dang, and P. A. Forsyth (2018), Time-consistent mean-variance portfolio optimization: A numerical impulse control approach, Insurance Math. Econom., 83, pp. 9-28. · Zbl 1417.91558
[71] P. M. van Staden, D.-M. Dang, and P. A. Forsyth (2019), Mean-quadratic variation portfolio optimization: A desirable alternative to time-consistent mean-variance optimization?, SIAM J. Financial Math., 10, pp. 815-856, https://doi.org/10.1137/18M1222570. · Zbl 1427.91262
[72] E. Vigna (2014), On efficiency of mean-variance based portfolio selection in defined contribution pension schemes, Quant. Finance, 14, pp. 237-258. · Zbl 1294.91168
[73] E. Vigna (2017), Tail Optimality and Preferences Consistency for Intertemporal Optimization Problems, working paper, Collegio Carlo Alberto.
[74] E. Vigna (2020), On time consistency for mean-variance portfolio selection, Internat. J. Theoret. Appl. Finance, 23, 2050042. · Zbl 1457.91352
[75] J. Wang and P. A. Forsyth (2010), Numerical solution of the Hamilton-Jacobi-Bellman formulation for continuous time mean variance asset allocation, J. Econom. Dynam. Control, 34, pp. 207-230. · Zbl 1182.91161
[76] J. Wang and P. A. Forsyth (2011), Continuous time mean variance asset allocation: A time-consistent strategy, Eur. J. Oper. Res., 209, pp. 184-201. · Zbl 1208.91139
[77] L. Wang and Z. Chen (2018), Nash equilibrium strategy for a DC pension plan with state-dependent risk aversion: A multiperiod mean-variance framework, Discrete Dynam. Nature Soc., 2018, 7581231. · Zbl 1422.91670
[78] L. Wang and Z. Chen (2019), Stochastic game theoretic formulation for a multi-period DC pension plan with state-dependent risk aversion, Mathematics, 7, pp. 1-16.
[79] J. Wei and T. Wang (2017), Time-consistent mean-variance asset-liability management with random coefficients, Insurance Math. Econom., 77, pp. 84-96. · Zbl 1397.91564
[80] H. Wu and Y. Zeng (2015), Equilibrium investment strategy for defined-contribution pension schemes with generalized mean-variance criterion and mortality risk, Insurance Math. Econom., 64, pp. 396-408. · Zbl 1348.91262
[81] P. Yu (1974), Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives, J. Optim. Theory Appl., 14, pp. 319-377. · Zbl 0268.90057
[82] Y. Zeng and Z. Li (2011), Optimal time-consistent investment and reinsurance policies for mean-variance insurers, Insurance Math. Econom., 49, pp. 145-154. · Zbl 1218.91167
[83] Y. Zhang, Y. H. Wu, S. Li, and B. Wiwatanapataphee (2017), Mean-variance asset liability management with state-dependent risk aversion, North Amer. Actuarial J., 21, pp. 87-106. · Zbl 1414.91247
[84] Z. Zhang, S. Zohren, and S. Roberts (2020), Deep Learning for Portfolio Optimization, preprint, https://arxiv.org/abs/2005.13665.
[85] H. Zhao, Y. Shen, and Y. Zeng (2016), Time-consistent investment-reinsurance strategy for mean-variance insurers with a defaultable security, J. Math. Anal. Appl., 437, pp. 1036-1057. · Zbl 1331.91105
[86] X. Zhou and D. Li (2000), Continuous time mean variance portfolio selection: A stochastic LQ framework, Appl. Math. Optim., 42, pp. 19-33. · Zbl 0998.91023
[87] Z. Zhou, H. Xiao, J. Yin, X. Zeng, and L. Lin (2016), Pre-commitment vs. time-consistent strategies for the generalized multi-period portfolio optimization with stochastic cash flows, Insurance Math. Econom., 68, pp. 187-202. · Zbl 1369.91170
[88] Y. Zweng and Z. Li (2011), Asset liability management under benchmark and mean-variance criteria in a jump diffusion market, J. Syst. Sci. Complex., 24, pp. 317-327. · Zbl 1237.91224
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.