×

A numerical method for solving 3D elasticity equations with sharp-edged interfaces. (English) Zbl 1302.74171

Summary: Interface problems occur frequently when two or more materials meet. Solving elasticity equations with sharp-edged interfaces in three dimensions is a very complicated and challenging problem for most existing methods. There are several difficulties: the coupled elliptic system, the matrix coefficients, the sharp-edged interface, and three dimensions. An accurate and efficient method is desired. In this paper, an efficient nontraditional finite element method with nonbody-fitting grids is proposed to solve elasticity equations with sharp-edged interfaces in three dimensions. The main idea is to choose the test function basis to be the standard finite element basis independent of the interface and to choose the solution basis to be piecewise linear satisfying the jump conditions across the interface. The resulting linear system of equations is shown to be positive definite under certain assumptions. Numerical experiments show that this method is second order accurate in the \(L^{\infty}\) norm for piecewise smooth solutions. More than 1.5th order accuracy is observed for solution with singularity (second derivative blows up).

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35Q74 PDEs in connection with mechanics of deformable solids
74E30 Composite and mixture properties
74M15 Contact in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T. Lin, D. Sheen, and X. Zhang, “A locking-free immersed finite element method for planar elasticity interface problems,” Journal of Computational Physics, vol. 247, pp. 228-247, 2013. · Zbl 1349.74328
[2] H.-J. Jou, P. H. Leo, and J. S. Lowengrub, “Microstructural evolution in inhomogeneous elastic media,” Journal of Computational Physics, vol. 131, no. 1, pp. 109-148, 1997. · Zbl 0880.73050 · doi:10.1006/jcph.1996.5581
[3] H. Gao, Y. Huang, and F. F. Abraham, “Continuum and atomistic studies of intersonic crack propagation,” Journal of the Mechanics and Physics of Solids, vol. 49, no. 9, pp. 2113-2132, 2001. · Zbl 1093.74510 · doi:10.1016/S0022-5096(01)00032-1
[4] P. Grisvard, Elliptic Problems in Nonsmooth Domains-Monographs and Studies in Mathematics, Pitman Advanced Publishing Program, 1985. · Zbl 0695.35060
[5] A. Quarteroni, Numerical Models for Differential Problems, Springer, Berlin, Germany, 2009. · Zbl 1170.65326
[6] A. Quarteroni and R. Sacco, Numerical Approximation of Partial Differential Equations, Springer, Berlin, Germany, 1994. · Zbl 0817.65137
[7] R. H. Nochetto, M. Paolini, and C. Verdi, “An adaptive finite element method for two-phase stefan problem in two space dimensions, part II: implementation and numerical experiments,” SIAM Journal on Scientific and Statistical Computing, vol. 12, pp. 1207-1244, 1991. · Zbl 0733.65088 · doi:10.1137/0912065
[8] A. Schmidt, “Computation of three dimensional dendrites with finite elements,” Journal of Computational Physics, vol. 125, no. 2, pp. 293-312, 1996. · Zbl 0844.65096 · doi:10.1006/jcph.1996.0095
[9] C. S. Peskin, “Numerical analysis of blood flow in the heart,” Journal of Computational Physics, vol. 25, no. 3, pp. 220-252, 1977. · Zbl 0403.76100 · doi:10.1016/0021-9991(77)90100-0
[10] C. S. Peskin, “Improved volume conservation in the computation of flows with immersed elastic boundaries,” Journal of Computational Physics, vol. 105, no. 1, pp. 33-46, 1993. · Zbl 0762.92011 · doi:10.1006/jcph.1993.1051
[11] M. Sussman, “A level set approach for computing solutions to incompressible two-phase flow,” Journal of Computational Physics, vol. 114, no. 1, pp. 146-159, 1994. · Zbl 0808.76077 · doi:10.1006/jcph.1994.1155
[12] R. J. Leveque and Z. Li, “Immersed interface method for elliptic equations with discontinuous coefficients and singular sources,” SIAM Journal on Numerical Analysis, vol. 31, no. 4, pp. 1019-1044, 1994. · Zbl 0811.65083 · doi:10.1137/0731054
[13] Y. C. Zhou, S. Zhao, M. Feig, and G. W. Wei, “High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources,” Journal of Computational Physics, vol. 213, no. 1, pp. 1-30, 2006. · Zbl 1089.65117 · doi:10.1016/j.jcp.2005.07.022
[14] S. Yu, Y. Zhou, and G. W. Wei, “Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces,” Journal of Computational Physics, vol. 224, no. 2, pp. 729-756, 2007. · Zbl 1120.65333 · doi:10.1016/j.jcp.2006.10.030
[15] S. N. Yu and G. W. Wei, “Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities,” Journal of Computational Physics, vol. 227, pp. 602-632, 2007. · Zbl 1128.65103 · doi:10.1016/j.jcp.2007.08.003
[16] Z. Li, T. Lin, and X. Wu, “New Cartesian grid methods for interface problems using the finite element formulation,” Numerische Mathematik, vol. 96, no. 1, pp. 61-98, 2003. · Zbl 1055.65130 · doi:10.1007/s00211-003-0473-x
[17] Y. Gong, B. Li, and Z. Li, “Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions,” SIAM Journal on Numerical Analysis, vol. 46, no. 1, pp. 472-495, 2007. · Zbl 1160.65061 · doi:10.1137/060666482
[18] Z. Chen, Y. Xiao, and L. Zhang, “The adaptive immersed interface finite element method for elliptic and Maxwell interface problems,” Journal of Computational Physics, vol. 228, no. 14, pp. 5000-5019, 2009. · Zbl 1172.78008 · doi:10.1016/j.jcp.2009.03.044
[19] N. Moës, J. Dolbow, and T. Belytschko, “A finite element method for crack growth without remeshing,” International Journal for Numerical Methods in Engineering, vol. 46, no. 1, pp. 131-150, 1999. · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[20] G. J. Wagner, N. Moës, W. K. Liu, and T. Belytschko, “The extended finite element method for rigid particles in Stokes flow,” International Journal for Numerical Methods in Engineering, vol. 51, no. 3, pp. 293-313, 2001. · Zbl 0998.76054 · doi:10.1002/nme.169
[21] J. Chessa and T. Belytschko, “An extended finite element method for two-phase fluids,” Journal of Applied Mechanics, vol. 70, no. 1, pp. 10-17, 2003. · Zbl 1110.74391 · doi:10.1115/1.1526599
[22] X. Yang, B. Li, and Z. Li, “The immersed interface method for elasticity problems with interfaces,” Dynamics of Continuous, Discrete and Impulsive Systems A, vol. 10, no. 5, pp. 783-808, 2003. · Zbl 1140.74575
[23] X. Yang, Immersed interface method for elasticity problems with interfaces [Ph.D. thesis], North Carolina State University. · Zbl 1140.74575
[24] Y. Gong and Z. Li, “Immersed interface finite element methods for elasticity interface problems with non-homogeneous jump conditions,” Numerical Mathematics, vol. 3, no. 1, pp. 23-39, 2010. · Zbl 1224.65266 · doi:10.4208/nmtma.2009.m9001
[25] M. Oevermann, C. Scharfenberg, and R. Klein, “A sharp interface finite volume method for elliptic equations on Cartesian grids,” Journal of Computational Physics, vol. 228, no. 14, pp. 5184-5206, 2009. · Zbl 1169.65343 · doi:10.1016/j.jcp.2009.04.018
[26] J. Bedrossian, J. H. von Brecht, S. Zhu, E. Sifakis, and J. M. Teran, “A second order virtual node method for elliptic problems with interfaces and irregular domains,” Journal of Computational Physics, vol. 229, no. 18, pp. 6405-6426, 2010. · Zbl 1197.65168 · doi:10.1016/j.jcp.2010.05.002
[27] S. Hou, Z. Li, L. Wang, and W. Wang, “A numerical method for solving elasticity equations with interfaces,” Communications in Computational Physics, vol. 12, no. 2, pp. 595-612, 2012. · Zbl 1373.74091 · doi:10.4208/cicp.160910.130711s
[28] S. Hou, W. Wang, and L. Wang, “Numerical method for solving matrix coefficient elliptic equation with sharp-edged interfaces,” Journal of Computational Physics, vol. 229, no. 19, pp. 7162-7179, 2010. · Zbl 1197.65183 · doi:10.1016/j.jcp.2010.06.005
[29] S. Hou, L. Wang, and W. Wang, “A numerical method for solving the elliptic interface problems with multi-domains and triple junction points,” Journal of Computational Mathematics, vol. 30, no. 5, pp. 504-516, 2012. · Zbl 1274.65300
[30] S. Hou, P. Song, L. Wang, and H. Zhao, “A weak formulation for solving elliptic interface problems without body fitted grid,” Journal of Computational Physics, vol. 249, pp. 80-95, 2013. · Zbl 1314.65147
[31] S. Hou and X.-D. Liu, “A numerical method for solving variable coefficient elliptic equation with interfaces,” Journal of Computational Physics, vol. 202, no. 2, pp. 411-445, 2005. · Zbl 1061.65123 · doi:10.1016/j.jcp.2004.07.016
[32] J. Necas, Introduction to the Theory of Nonlinear Elliptic Equations, Teubner-Texte zur Mathematik, Band 52, 1983. · Zbl 0526.35003
[33] X. U.-D. Liu and T. C. Sideris, “Convergence of the ghost fluid method for elliptic equations with interfaces,” Mathematics of Computation, vol. 72, no. 244, pp. 1731-1746, 2003. · Zbl 1027.65140 · doi:10.1090/S0025-5718-03-01525-4
[34] X.-D. Liu, R. P. Fedkiw, and M. Kang, “A boundary condition capturing method for Poisson’s equation on irregular domains,” Journal of Computational Physics, vol. 160, no. 1, pp. 151-178, 2000. · Zbl 0958.65105 · doi:10.1006/jcph.2000.6444
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.