×

Explicit, fully implicit and forward gradient numerical integration of a hyperelasto-viscoplastic constitutive model for amorphous polymers undergoing finite deformation. (English) Zbl 1464.74036

Summary: Following the growing use of amorphous polymers in an expanding range of applications, interest for numerical modeling of polymer behavior has greatly increased. Together with reliable constitutive models, stable, accurate and rapid integration algorithms valid for large deformations need to be developed. Here, in the framework of hyperelasto-viscoplasticity and multiplicative split formulation, three integration algorithms (explicit, fully implicit and forward gradient) are generated for a constitutive polymer model and respective stability is investigated. The algorithms are furthermore implemented in a commercial Finite Element code and simulation of a full field tensile test is shown to capture the actual deformation behavior of polymers.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74S05 Finite element methods applied to problems in solid mechanics

Software:

Matlab; ABAQUS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Boyce MC, Parks DM, Argon AS (1988) Large inelastic deformation of glassy polymers. Part I: rate dependent constitutive model. Mech Mater 7:15-33 · doi:10.1016/0167-6636(88)90003-8
[2] Boyce MC, Parks DM, Argon AS (1989) Plastic flow in oriented glassy polymers. Int J Plast 5:593-615 · doi:10.1016/0749-6419(89)90003-X
[3] Boyce MC, Arruda EM (1990) An experimental and analytical investigation of the large strain compressive and tensile response of glassy polymers. Polym Eng Sci 30(20):1288-1298 · doi:10.1002/pen.760302005
[4] Arruda EM, Boyce MC (1993) Evolution of plastic anisotropy in amorphous polymers during finite straining. Int J Plast 9:697-720 · doi:10.1016/0749-6419(93)90034-N
[5] Boyce MC, Arruda EM, Jayachandran R (1994) The large strain compression, tension, and simple shear of polycarbonate. Polym Eng Sci 34(9):716-725 · doi:10.1002/pen.760340904
[6] Mulliken AD, Boyce MC (2006) Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates. Int J Solids Struct 43:1331-1356 · Zbl 1119.74328 · doi:10.1016/j.ijsolstr.2005.04.016
[7] Sarva S, Mulliken AD, Boyce MC (2007) Mechanics of Taylor impact testing of polycarbonate. Int J Solids Struct 44:2381-2400 · doi:10.1016/j.ijsolstr.2006.07.012
[8] Wu PD, Van der Giessen E (1993) On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. J Mech Phys Solids 41:427-456 · Zbl 0825.73103 · doi:10.1016/0022-5096(93)90043-F
[9] Anand L (1979) On H. Hencky’s approximate strain-energy function for moderate deformations. J Appl Mech 46:78-82 · Zbl 0405.73032 · doi:10.1115/1.3424532
[10] Anand L (1982) Constitutive equations for the rate-dependent deformation of metals at elevated temperatures. J Eng Mater Technol 104:12-17 · doi:10.1115/1.3225028
[11] Anand L (1985) Constitutive equations for hot-working of metals. Int J Plast 1:213-231 · Zbl 0612.73043 · doi:10.1016/0749-6419(85)90004-X
[12] Brown SB, Kim KH, Anand L (1989) An internal variable constitutive model for hot working of metals. Int J Plast 5:95-130 · Zbl 0695.73002 · doi:10.1016/0749-6419(89)90025-9
[13] Anand L (1996) A constitutive model for compressible elastomeric solids. Comput Mech 18:339-355 · Zbl 0894.73016 · doi:10.1007/BF00376130
[14] Anand L, Gurtin ME (2003) A theory of amorphous solids undergoing large deformations, with application to polymeric glasses. Int J Solids Struct 40:1465-1487 · Zbl 1045.74016 · doi:10.1016/S0020-7683(02)00651-0
[15] Anand L, Ames NM, Srinvastava V, Chester SA (2009) A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: formulation. Int J Plast 25:1474-1494 · Zbl 1165.74011 · doi:10.1016/j.ijplas.2008.11.004
[16] Cho H, Mayer S, Pöselt E, Susoff M, Veld PJ, Rutledge GC, Boyce MC (2017) Deformation mechanisms of thermoplastic elastomers: stress-strain behavior and constitutive modeling. Polymer 128:87-99 · doi:10.1016/j.polymer.2017.08.065
[17] Gudimetla MR, Doghri I (2017) A finite strain thermodynamically-based constitutive framework coupling viscoelasticity and viscoplasticity with application to glassy polymers. Int J Plast 98:197-216 · doi:10.1016/j.ijplas.2017.08.001
[18] Krairi A, Doghri I (2014) A thermodynamically-based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage. Int J Plast 60:163-181 · doi:10.1016/j.ijplas.2014.04.010
[19] Nguyen V-D, Lani F, Pardoen T, Morelle XP, Noels L (2016) A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. Int J Solids Struct 96:192-216 · doi:10.1016/j.ijsolstr.2016.06.008
[20] Danielsson M (2013) A stress update algorithm for constitutive models of glassy polymers. Int J Comput Methods Eng Sci Mech 14:336-342 · doi:10.1080/15502287.2012.756955
[21] Gearing BP, Anand L (2004) Notch-sensitive fracture of polycarbonate. Int J Solids Struct 41:827-845 · Zbl 1075.74623 · doi:10.1016/j.ijsolstr.2003.09.058
[22] Gearing BP, Anand L (2004) On modeling the deformation and fracture response of glassy polymers due to shear yielding and crazing. Int J Solids Struct 41:3125-3150 · Zbl 1119.74574 · doi:10.1016/j.ijsolstr.2004.01.017
[23] Kröner E (1960) Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Arch Rational Mech Anal 4:273-334 · Zbl 0090.17601 · doi:10.1007/BF00281393
[24] Lee EH, Liu DT (1967) Finite strain elastic-plastic theory particularly for plane wave analysis. J Appl Phys 38:19-27 · doi:10.1063/1.1708953
[25] Ortiz M, Popov EP (1985) Accuracy and stability of integration algorithms for elastoplastic constitutive relations. Int J Numer Methods Eng 21:1561-1576 · Zbl 0585.73057 · doi:10.1002/nme.1620210902
[26] Zienkiewicz OC, Cormeau IC (1974) Visco-plasticity/plasticity and creep in elastic solids; a unified numerical solution approach. Int J Numer Methods Eng 8:821-845 · Zbl 0284.73021 · doi:10.1002/nme.1620080411
[27] Cormeau IC (1975) Numerical stability in quasi-static elasto/visco-plasticity. Int J Numer Methods Eng 9:109-127 · Zbl 0293.73022 · doi:10.1002/nme.1620090110
[28] Pierce D, Shih CF, Needleman (1984) A tangent modulus method for rate dependent solids. Comput Struct 18:875-887 · Zbl 0531.73057 · doi:10.1016/0045-7949(84)90033-6
[29] Tvergaard V, Needleman A (2008) An analysis of thickness effects in the Izod test. Int J Solids Struct 45:3951-3966 · Zbl 1169.74517 · doi:10.1016/j.ijsolstr.2008.02.024
[30] Lush AM, Weber G, Anand L (1989) An implicit time-integration procedure for a set of internal variable constitutive equations for isotropic elasto-viscoplasticity. Int J Plast 5:521-549 · Zbl 0695.73009 · doi:10.1016/0749-6419(89)90012-0
[31] Weber G, Lush AM, Zavaliangos A, Anand L (1990) An objective time-integration procedure for isotropic rate-independent and rate-dependent elastic-plastic constitutive equations. Int J Plast 6:701-744 · Zbl 0714.73023 · doi:10.1016/0749-6419(90)90040-L
[32] Weber G, Anand L (1990) Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput Methods Appl Mech Eng 79:173-202 · Zbl 0731.73031 · doi:10.1016/0045-7825(90)90131-5
[33] Ortiz M, Radovitzky RA, Repetto EA (2001) The computation of the exponential and logarithmic mappings and their first and second linearizations. Int J Numer Methods Eng 51:1431-1441 · Zbl 0995.65053 · doi:10.1002/nme.263
[34] Matlab Release (2016a) The MathWorks Inc., Natick, Massachusetts, United States
[35] Abaqus (2009) Abaqus manuals, 6.9th edn. Simulia
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.