×

Certain new WP-Bailey pairs and basic hypergeometric series identities. (English) Zbl 1382.33019

Summary: The Bailey lemma has been a powerful tool in the discovery of identities of Rogers-Ramanujan type and also ordinary and basic hyper-geometric series identities. The mechanism of Bailey lemma has also led to the concepts of Bailey pair and Bailey chain. In the present work certain new WP-Bailey pairs have been established. We also have deduced a number of basic hypergeometric series identities as an application of new WP-Bailey pairs.

MSC:

33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. Ahmad Ali and S. Nadeem Hasan Rizvi, Certain transformations and summationsof basic hypergeometric series, J. Math. Comput. Sci. 5 (2015), no 1, 25-33. · Zbl 1332.33022
[2] G. E. Andrews, A Genaral theory of identities of the Rogers-Ramanujan type, Bull.Amer. Math. Soc. 80 (1974), 1033-1052.898S. A. ALI AND S. N. H. RIZVI · Zbl 0301.10016
[3] , An analytic generalization of the Rogers-Ramanujan identities for odd moduli,Proc. Nat. Acad. Sci. USA 71 (1974), 4082-4085. · Zbl 0289.10010
[4] , Multiple series Rogers-Ramanujan type identities, Pacific J. Math. 114 (1984),no. 2, 267-283. · Zbl 0547.10012
[5] , Bailey’s transform, lemma, chains and tree, Special functions 2000: currentperspective and future directions (Tempe, AZ), 1-22, NATO Sci. Ser. II Math. Phys.Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001 · Zbl 1005.33005
[6] G. E. Andrews and A. Berkovich, The WP-Bailey tree and its implications, J. LondanMath. Soc. (2) 66 (2002), no. 3, 529-549. · Zbl 1049.33010
[7] W. N. Bailey, Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. 50(1949), 1-10. · Zbl 0031.39203
[8] D. M. Bressoud, Some identities for terminating q-series, Math. Proc. Cambridge Phi-los. Soc. 89 (1981), no. 2, 211-223. · Zbl 0454.33003
[9] R. Y. Denis, On certain summation of q-series and identities of Rogers-Ramanujantype, J. Math. Phys. Sci. 22 (1988), no. 1, 87-99. · Zbl 0644.33007
[10] R. Y. Denis, S. N. Singh, and S. P. Singh, Certain transformation and summationformulae for q-series, Ital. J. Pure Appl. Math. 27 (2010), 179-190. · Zbl 1241.33016
[11] Q. Foda and Y. H. Quano, Polynomial identities of the Rogers-Ramanujan type, Inter-nat. J. Modern. Phys. A 10 (1995), no. 16, 2291-2315. · Zbl 1044.33502
[12] G. Gasper and R. Mizan, Basic Hypergeometric Series, Second Edition. Encyclopedia ofMathematics and Its Applications, 96. Cambridge University Press, Cambridge, 2004.
[13] Q. Liu and X. Ma, On the characteristic equation of well-poised Bailey chains, Ramanu-jan J. 18 (2009), no. 3, 351-370. · Zbl 1172.05009
[14] S. N. Singh, Certain partition theorems of Rogers-Ramanujan type, J. Indian Math. Soc.(N.S.) 62 (1996), no. 1-4, 113-120. · Zbl 0896.11041
[15] , On certain summation and transformation formulas for basic hypergeometricseries, Int. J. Math. Arch. 2 (2011), no. 12, 2670-2677.
[16] U. B. Singh, A note on a transformation of Bailey, Quart. J. Math. Oxford Ser. (2) 45(1994), no. 177, 111-116. · Zbl 0798.33011
[17] L. J. Slater, A new proof of Rogers’s transformations of infinite series, Proc. LondonMath. Soc. (2) 53 (1951), 460-475. · Zbl 0044.06102
[18] , Futher identities of the Rogers-Ramanujan type, Proc. London Math. Soc. 54(1952), 147-167. · Zbl 0046.27204
[19] V. P. Spiridonov, An elliptic incarnation of the Bailey chain, Int. Math. Res. Not. 37(2002), no. 37, 1945-1977. · Zbl 1185.33023
[20] A. Verma and V. K. Jain, Certain summation formulae for q-series, J. Indian Math.Soc. 47 (1983), no. 1-4, 71-85. · Zbl 0605.33003
[21] S. O. Warnaar, 50 years of Bailey’s lemma, Algebraic combinatorics and applications(Gweinstein, 1999), 333-347, Springer, Berlin, 2001. · Zbl 0972.11003
[22] , Extensions of the well-poised and elliptic well-poised Bailey lemma, Indag.Math. New Series 14 (2003), no. 3-4, 571-588. · Zbl 1054.33013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.